

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- IV EXAMINATION - SUMMER 2020

Subject Code: 2140706 Date:29/10/2020

Subject Name: NUMERICAL AND STATISTICAL METHODS FOR

COMPUTER ENGINEERING
Time: 10:30 AM TO 01:00 PM
Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

MARKS

Q.1 (a) Find the relative error if the number X = 0.004997 is

03

07

- (i) truncated to three decimal places.
 - (ii) rounded off to three decimal places.
- (b) Find the negative root of $x^3 7x + 3 = 0$ by the bisection method correct up to three decimal places.
- (c) Using Gauss Jacobi method solve the following system of the equations:

$$8x - y + 2z = 13$$

 $x - 10y + 3z = 17$
 $3x + 2y + 12z = 25$

- Q.2 (a) Using trapezoidal rule to evaluate $\int_{0}^{2} \frac{x}{\sqrt{2+x^2}} dx$, dividing the interval into four equal parts.
 - (b) By using Lagrange's interpolation formula, find y(10).

X	5	6	9	11
у	12	13	14	16

(c) Using the Runge-Kutta method of fourth order, solve $10\frac{dy}{dx} = x^2 + y^2$, y(0) = 1 at x = 0.1, x = 0.2 taking h = 0.1

OR

- (c) Using Euler's method find the approximate value of y at x = 1.5 taking h = 0.1. Given that $\frac{dy}{dx} = \frac{y x}{\sqrt{xy}}$ and y(1) = 2.
- Q.3 (a) Using Newton Raphson method find the positive root of $x^4 x 10 = 0$ correct up to three decimal places.

 - (c) Find the regression coefficients b_{yx} and b_{yx} hence, find the correlation coefficient between x and y for the following data

X	4	2	3	4	2
у	2	3	2	4	4

www.FirstRanker.com

www.FirstRanker.com

04

03

03

- **Q.3** (a) Using Simpson's 1/3 rule, find $\int e^{-x^2} dx$, by taking n = 6.
 - Using Newton's divided difference formula, compute f(10.5)from the following data:

X	10	11	13	17
f(x)	2.3026	2.3979	2.5649	2.8332

- (c) Solve $x^4 8x^3 + 39x^2 62x + 50$ by using Lin Bairstow method up **07** to third iteration starting with $p_0 = q_0 = 0$.
- 03 0.4 Find a real root of the equation $x \log_{10} x = 1.2$ by the regula falsi method.
 - (b) The first four moments of distribution about x = 2 are 1, 2.5, 5.5 04 and 16. Calculate the four moments about \bar{x} and about zero.
 - **07** Given that $2\frac{dy}{dx} = y^2 + x^2y^2$, y(0) = 1, y(0.1) = 1.06, y(0.2) = 1.12, y(0.3) = 1.21 evaluate y(0.4) by Milne's predictorcorrector method.

OR

(a) Find the arithmetic mean form the following data: **Q.4**

Marks less	10	20	30	40	50	60
than						
No. of	10	30	60	110	150	180
students						

- **(b)** (i) Obtain relation between Δ and E. 04 (ii) Obtain relation between D and E.
- Obtain cubic spline for every subinterval from the following data 07 X 0 2 33 244 f(x)1
- Two unbiased coins are tossed. Find expected value of number of Q.5 03 heads.
 - **(b)** 04 By Simpson's 3/8 rule, evaluate $\int_{1}^{1} \frac{\sin x}{x} dx$ taking $h = \frac{1}{6}$.
 - From the following table, estimate the number of students who **07** obtained marks between 40 and 45.

Marks	30-40	40-50	50-60	60-70	70-80		
No. of 31 students		42	51	35	31		
OR							

- (a) Using Budan's theorem find the number of roots of the equation Q.5 $f(x) = x^4 - 4x^3 + 3x^2 - 10x + 8 = 0$ in the interval [-1, 0].
 - **(b)** Find the positive solution of $x 2\sin x = 0$, correct up to three 04 decimal places starting from $x_0 = 2$ and $x_1 = 1.9$. Using secant method.
 - Using Gauss Siedel method solve the following system of the **07** (c) equations:

$$3x - 0.1y - 0.2z = 7.85$$

$$0.1x + 7y - 0.3z = -19.3$$

$$0.3x - 0.2y + 10z = 71.4$$
