

# GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- IV EXAMINATION - SUMMER 2020

Subject Code: 2140706 Date:29/10/2020 Subject Name: NUMERICAL AND STATISTICAL METHODS FOR

COMPUTER ENGINEERING

Time: 10:30 AM TO 01:00 PM Total Marks: 70

#### Instructions:

- 1. Attempt all questions.
- Make suitable assumptions wherever necessary.
- Figures to the right indicate full marks.

### MARKS

03

04

- Q.1(a) Find the relative error if the number X = 0.004997 is
  - truncated to three decimal places.
  - rounded off to three decimal places. (ii)
  - **(b)** Find the negative root of  $x^3 7x + 3 = 0$  by the bisection method 04 correct up to three decimal places.
  - (c) Using Gauss Jacobi method solve the following system of the 07 equations:

$$8x - y + 2z = 13$$

$$x-10y+3z=17$$

$$3x + 2y + 12z = 25$$

- Q.2 (a) Using trapezoidal rule to evaluate  $\int_{0}^{2} \frac{x}{\sqrt{2+x^2}} dx$ , dividing the 03 interval into four equal parts.
  - (b) By using Lagrange's interpolation formula, find y(10).

| x | 5  | 6  | 9  | 11 |
|---|----|----|----|----|
| у | 12 | 13 | 14 | 16 |

(c) Using the Runge-Kutta method of fourth order, 07  $10\frac{dy}{dx} = x^2 + y^2$ , y(0) = 1 at x = 0.1, x = 0.2 taking h = 0.1

- (c) Using Euler's method find the approximate value of y at x = 1.507 taking h = 0.1. Given that  $\frac{dy}{dx} = \frac{y - x}{\sqrt{xy}}$  and y(1) = 2.
- Q.3 (a) Using Newton Raphson method find the positive root of 03  $x^4 - x - 10 = 0$  correct up to three decimal places.
  - (b) Fit a least square quadratic curve to the following data: 04 1.8 3.2
    - Estimate y(2.4).
  - 07 (c) Find the regression coefficients b<sub>1x</sub> and b<sub>1x</sub> hence, find the correlation coefficient between x and y for the following data

| X | 4 | 2 | 3 | 4 | 2 |
|---|---|---|---|---|---|
| у | 2 | 3 | 2 | 4 | 4 |



## www.FirstRanker.com

www.FirstRanker.com

03

04

03

- Using Simpson's 1/3 rule, find  $\int_{0}^{0.6} e^{-x^2} dx$ , by taking n = 6.
  - (b) Using Newton's divided difference formula, compute f(10.5) 04 from the following data:

| x    | 10     | 11     | 13     | 17     |
|------|--------|--------|--------|--------|
| f(x) | 2.3026 | 2.3979 | 2.5649 | 2.8332 |

- (c) Solve x<sup>4</sup> -8x<sup>3</sup> +39x<sup>2</sup> -62x +50 by using Lin Bairstow method up to third iteration starting with p<sub>0</sub> = q<sub>0</sub> = 0.
- Q.4 (a) Find a real root of the equation  $x \log_{10} x = 1.2$  by the regula falsi method.
  - (b) The first four moments of distribution about x = 2 are 1, 2.5, 5.5 and 16. Calculate the four moments about  $\overline{x}$  and about zero.
  - (c) Given that  $2\frac{dy}{dx} = y^2 + x^2y^2$ , y(0) = 1, y(0.1) = 1.06, y(0.2) = 1.12, y(0.3) = 1.21 evaluate y(0.4) by Milne's predictor-corrector method.

OR

Q.4 (a) Find the arithmetic mean form the following data:

| Marks less<br>than | 10 | 20 | 30 | 40  | 50  | 60  |
|--------------------|----|----|----|-----|-----|-----|
| No. of<br>students | 10 | 30 | 60 | 110 | 150 | 180 |

- (i) Obtain relation between ∆ and E.(ii) Obtain relation between D and E.
- Q.5 (a) Two unbiased coins are tossed. Find expected value of number of heads.
  - (b) By Simpson's 3/8 rule, evaluate  $\int_{0}^{1} \frac{\sin x}{x} dx$  taking  $h = \frac{1}{6}$ .
  - (c) From the following table, estimate the number of students who obtained marks between 40 and 45.

| No. of 31 42 51 35 31 students | Marks | 30-40           | 40-50 | 50-60 | 60-70 | 70-80 |
|--------------------------------|-------|-----------------|-------|-------|-------|-------|
|                                | -     | N <sup>31</sup> | 42    | 51    | 35    | 31    |

- Q.5 (a) Using Budan's theorem find the number of roots of the equation  $f(x) = x^4 4x^3 + 3x^2 10x + 8 = 0 \text{ in the interval } [-1,0].$ 
  - (b) Find the positive solution of  $x 2\sin x = 0$ , correct up to three decimal places starting from  $x_0 = 2$  and  $x_1 = 1.9$ . Using secant method.
  - (c) Using Gauss Siedel method solve the following system of the equations:

$$3x - 0.1y - 0.2z = 7.85$$

$$0.1x + 7y - 0.3z = -19.3$$

$$0.3x - 0.2y + 10z = 71.4$$

\*\*\*\*\*\*\*

