www.FirstRanker.com

www.FirstRanker.com Enrolment No.

Seat No.: _____

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- IV EXAMINATION - SUMMER 2020

Subject Code: 2140909 Date:29/10/2020

Subject Name: Field Theory

Time: 10:30 AM TO 01:00 PM Total Marks: 70

Instructions:

Q.4

(c)

(a) List any three effects of EMI.

the transmission line.

Derive the capacitance of Co-axial cable.

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- (a) State Gauss's law. Also write limitations of Gauss' law. 0.1 03 (b) Define and explain unit vectors in cylindrical and spherical co-ordinate 04 systems. (c) Planes x=2 and y=-3, respectively carry charges 10 nC/m^2 and 15 nC/m^2 . 07 If the line x=0, z=2 carries charge 10π nC/m, calculate E at (1,1,-1) due to three charge distribution. (a) Define (1) Electric field intensity (2) Potential Difference (3) Potential **Q.2** 03 gradient **(b)** State and prove Stoke's Theorem. 04 (c) Express the vector $B = \frac{10}{r} a_r + r \cos \theta \, a_\theta + a_\varphi$ in cartesian coordinate. 07 Find vector B at (-3, 4, 0)) 39 (c) What is an electric dipole? Derive expression for electric field intensity **07** and potential due to an electric dipole. (a) Derive the relation between current and current density. 03 0.3 **(b)** Find div D at P $(5, \pi/2, 1)$ if $D = rz \sin \varphi a_r + 3rz^2 \cos \varphi a_{\varphi}$ 04 State Ampere's circuit law and obtain magnetic field intensity due to 07 infinite long straight conductor carrying current I using Ampere's Circuital law. OR State and Explain various types of charge distribution with mathematical **Q.3** 03 equation. (b) Derive the equation of continuity equation in integral and differential 04 form. State and prove divergence theorem. 07 (c) Explain briefly about lossless propagation of sinusoidal voltages. **Q.4** (a) 03 Define dielectric strength and list three properties of dielectric material. 04 Write in details about techniques of controlling EMI. 07

03

04

07

With the help of equivalent circuit derive the general wave equations for

www.FirstRanker.com

www.FirstRanker.com

Q.5	(a)	Derive the expression for the force between two differential current elements.	03
	(b) (c)	Write Maxwell's equations in point form and integral form State and prove Uniqueness theorem.	04 07
		OR	
Q.5	(a)	Derive Poisson's and Laplace's Equations.	03
	(b)	State and explain Faraday's law for statically induced emf with derivation.	04
	(c)	Explain magnetic boundary conditions for normal component and tangential component.	07

MWW.FirstRanker.com