

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- IV EXAMINATION - SUMMER 2020

Subject	Code: 2	2141002	Date:27/10/2020
~ - •			

Subject Name: ANALOG CIRCUIT DESIGN

Time: 10:30 AM TO 01:00 PM	Total Marks: 70
----------------------------	-----------------

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

	J	. Figures to the Figure Indicate full marks.	MARKS
Q.1	(a)	Draw simplified internal block diagram of 555 Timer IC.	03
	(b)	Draw and explain typical connection diagram of 78XX series voltage regulator. Also explain drop out voltage.	04
	(c)	Derive the expression for the CE short-circuit current gain A_i as a function of frequency.	07
Q.2	(a)	Define followings: (i) Input offset voltage (ii) CMRR (iii) PSRR.	03
	(b)	For Hybrid- π transistor model $g_m = 50$ mA/V, $r_{b'e} = 1$ K, $C_e = 1$ pF, and $C_c = 0.2$ pF is given then determine the values of f_β and f_T .	04
	(c)	Explain in detail transistor phase-shift oscillator and also derive expression for the frequency.	07
		OR	
	(c)	Draw Wien-bridge oscillator circuit and obtain its frequency of oscillation.	07
Q.3	(a)	Draw and explain block diagram of typical OP-AMP.	03
	(b)	List out characteristics of ideal OP-AMP.	04
	(c)	What is Slew rate? What are its causes? Derive expression for maximum frequency of operation for desired output swing in terms of slew rate? OR	07
Q.3	(a)	Draw equivalent circuit of an OP-AMP.	03
	(b)	Write a brief note on emitter-coupled Differential Amplifier.	04
	(c)	What is instrumentation amplifier? With help of neat diagram explain operation of Three OP-AMP based Instrumentation amplifier.	07
Q.4	(a)	Briefly explain Inverting Amplifier in open loop mode.	03
	(b)	Explain the circuit of voltage to current converter with floating load.	04
	(c)	Draw and explain closed-loop differential amplifier with one OP-AMP and derive voltage gain equation.	07
		OR	
Q.4	(a)	Briefly explain operation of basic differentiator circuit.	03
	(b)	Draw and explain OP-AMP based Voltage-shunt feedback amplifier. Derive closed-loop voltage gain equation for the same.	04
	(c)	Explain in detail inverting Schmitt trigger circuit.	07
Q.5	(a)	Briefly explain Peaking Amplifier.	03
	(b)	With reference to filter design define following terms: (i) Pass band (ii) Stop band (iii) Attenuation (iv) Cut-off frequency	04
	(c)	Show how Biguad circuit can be used as a universal filter?	07

www.FirstRanker.com

www.FirstRanker.com

OR

(a)	Draw and explain briefly Zero crossing detector circuit.	03
(b)	Design a first order low-pass filter for the following specifications:	04
	(i) Passband voltage gain = 2 (ii) Cut-off frequency $f_c = 10$ Khz.	
(c)	With help of circuit diagram, explain operation of first order Butterworth low-pass filter.	07
	(b)	 (i) Passband voltage gain = 2 (ii) Cut-off frequency f_c = 10 Khz. (c) With help of circuit diagram, explain operation of first order Butterworth low-

MMM.FilestReathRef.com