GUJARAT WwW.FirstRanker.com wNOLOGICAL UNIVERSITY
 BE - SEMESTER- IV EXAMINATION - SUMMER 2020

\qquad

Subject Code: 2141005
Date:02/11/2020

Subject Name: SIGNALS AND SYSTEMS

Time: 10:30 AM TO 01:00 PM
Total Marks: 70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.

Marks

Q. 1 (a) Based upon nature and characteristics in the time domain, classify signals broadly. In each of the broad domains enlist signals further classification.
(b) Sketch each of the following signals.
(i) $\mathrm{x}[\mathrm{n}]=\mathrm{u}[\mathrm{n}]-\mathrm{u}[\mathrm{n}-5]$
(ii) $\mathrm{x}(\mathrm{t})=\mathrm{u}(\mathrm{t}+4) \cdot \mathrm{u}(-\mathrm{t}+4)$
(c) Classify following systems as: Causal or non-causal; Linear or nonlinear and Time invariant or time variant
$\mathrm{y}(\mathrm{n})=\log _{10}|x(n)|$
$\mathrm{y}(\mathrm{n})=\mathrm{n} x(\mathrm{n})+x(\mathrm{n}+2)$
Q. 2 (a) State and prove Linearity property of LTI systems using Laplace
(b) For LTI system, if input sequence is $x(\mathrm{n})$ and impulse response is defined as $h(n)$, derive equation for discrete time convolution sum $y(n)$.
(c) Consider a causal LTL system with impulse response $h(t)=e^{-4 t} u(t)$. Find the output of the system for an input $x(t)=3 \cdot e^{-t}$

OR

(c) Solve the following difference equation
$y(n)+2 y(n-1)=x(n)$
With $x(n)=\left(\frac{1}{3}\right)^{n} u(n)$ and initial condition $\mathrm{y}(-1)=1$
Q. 3 (a) Enlist dirichelts conditions for existence of Fourier transform. 03
(b) Find discrete time linear convolution of following two sequences using matrices method.
$x(n)=2 \delta(n+1)-3 \delta(n)+\delta(n-1)+2 \delta(n-2)$
$h(n)=2 \delta(n-1)+3 \delta(n-2)+4 \delta(n-3)$
(c) Compute the Fourier transform for the signal $x(\mathrm{t})$ in following

Figure:01

OR

Q. 3 (a) Explain distributive property of LTI systems with suitable figures.
(b) An LTI system has impulse response given by $\mathrm{h}(\mathrm{n})=\{2,1,2,1\}$.

Find its response to input $x(\mathrm{n})=\{1,-2,4\}$.
(c) Compute the Fourier transform for the signal $x(\mathrm{t})$ in following Figure: 02.

Figure:02
Q. 4 (a) Prove that for causal sequences, the ROC of Z transform is exterior of a circle.
(b) Find the Fourier transform of cosine wave $\cos w_{0} t$. Draw its 04 magnitude spectrum.
(c) State and prove (a) Differentiation in time domain and (b) time shifting properties of LTI systems using Fourier transform.

OR

Q. 4 (a) Explain with suitable mathematical equations, relation between Laplace Transform and Fourier Transform,
(b) Using properties of Z transform, compute Z transform for following signals.
$x(n)=u(-n)$
$x(n)=u(-n-2)$
(c) Find fourier transforms of unit impluse function. Define clearly Signam function $(\operatorname{sgn}(\mathrm{t}))$ and with its help find FT of unit step function.
Q. 5 (a) Find inverse Z transform of

$$
X(z)=\frac{z^{-1}}{3-4 z^{-1}+z^{-2}} ; R o C|z|>1
$$

(b) Using Z transform, find the convolution of the sequences $x_{1}(n)=\{1,2,3,4\} ; x_{2}(n)=\{1,1,1\}$
(c) Determine steady state (forced) response for the system with impulse response $h(n)=\left(\frac{1}{2}\right)^{n} u(n)$ for the input $x(n)=[\cos (\pi n)] u(n)$.

OR

Q. 5 (a) Find inverse Z transform of
(c) An LTI system is described by the difference equation
$y(n)-\frac{9}{4} y(n-1)+\frac{1}{2} y(n-2)=x(n)-3 x(n-1)$
Specify the ROC of $\mathrm{H}(\mathrm{z})$ and determine $\mathrm{h}(\mathrm{n})$ for the following conditions,
(i) The system is stable
(ii) The system is causal

