

www.FirstRanker.com

www.FirstRanker.com

Seat No.: _____ Enrolment No.____

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER 1&2 EXAMINATION - SUMMER 2020

Subject Code: 3110015 Date:09/11/2020

Subject Name: Mathematics II

Time: 10:30 AM TO 01:30 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Marks

- Q.1 (a) Evaluate $\int_{c} \overline{F} \cdot d\overline{r}$ along the parabola $y^2 = x$ between the points (0, 0) and (1, 1) where $\overline{F} = x^2 \hat{i} + xy \hat{j}$
 - (b) Find the work done in moving particle from A (1, 0, 1) to B (2,1,2) 04 along the straight-line AB in the force field $\bar{F} = x^2 \hat{i} + (x y) \hat{j} + (y + z) \hat{k}$
 - (c) Verify green's theorem for $\iint_c (2xydx y^2dy)$ where C is the boundary of the region bounded by the ellipse $3x^2 + 4y^2 = 12$
- Q.2 (a) Find the Laplace transform of $te^{-4t} \sin 3t$.
 - (b) Find the inverse Laplace transform of $\frac{5s+3}{(s-1)(s^2+2s+5)}$.
 - (c) Show that the vector field $\bar{F} = (y \sin z \sin x)\hat{i} + (x \sin z + 2yz)\hat{j} + (xy \cos z + y^2)\hat{k}$ is conservative and find the corresponding scalar potential.

OR

- (c) Show that $\bar{F} = 2xyz\hat{i} + (x^2z + 2y)\hat{j} + x^2y\hat{k}$ is irrotational and find a scalar function ϕ such that $\bar{F} = grad\phi$.
- Q.3 (a) Find the directional derivative of $f(x, y) = xy + xe^y + \cos(xy)$ at the point P(1,0) in the direction of $\overline{u} = 3\hat{i} 4\hat{j}$.
 - (b) Find the inverse Laplace transform of $\log \left(1 + \frac{1}{s^2}\right)$.
 - (c) Find the singular solution and general solution of $y + px = x^4 p^2$

OR

- Q.3 (a) Find the Laplace transform of $\frac{\cos at \cos bt}{t}$.
 - Show that $\int_{0}^{\infty} \frac{\omega^{3} \sin \omega x}{\omega^{4} + 4} d\omega = \frac{\pi}{2} e^{-x} \cos x; x > 0.$
 - (c) Find the power series solution of y' 2xy = 0; y(0) = 1 near x = 0.

Fig.4ran(a)r's choice Find the Laplace twwww.FirstRanker.com2)}. www.FirstRanker.com

- 04 Solve $\frac{d^2x}{dt^2} - 2\frac{dx}{dt} + x = e^t$ with x = 2, $\frac{dx}{dt} = -1$ at t = 0.
- **(c)** Solve $(D^2 - 1)y = xe^x \sin x$ **07**

OR

- (a) Solve $\frac{dy}{dx} + x \sin 2y = x^3 \cos^2 y$ **Q.4** 03
 - **(b) 04** Using method of variation of parameter, solve $\frac{d^2y}{dx^2} + 4y = \tan 2x$.
 - Using method of undetermined coefficients solve **(c) 07** $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = x^2e^x.$
- Classify the singular points of $x^2y'' + xy' 2y = 0$. 03 **Q.5** (a)
 - 04 Solve $\frac{d^2y}{dx^2} + 9y = \sin 2x \sin x$.
 - Solve (i) $(x^3 + 3xy^2)dx + (3x^2y + y^3)dy = 0$. **(c) 07**
 - (ii) $\frac{dy}{dx} + y \cot x = 2 \cos x$.

OR

- Solve $\frac{dy}{dx} = \frac{y + \sqrt{x^2 + y^2}}{x^2 + y^2}$. **Q.5** 03
 - 04 Solve $x^2 \frac{d^2 y}{dx^2} - 2x \frac{dy}{dx} + y = \cos(\ln x)$.
 - Using Frobenius method solve $2x^2y'' + xy (x+1)y = 0$. (c) **07**