

Enrolment No._

www.FirstRanker.com www.FirstRanker.com GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- IV EXAMINATION - SUMMER 2020

Subject Code: 3140610 Date:02/11/2020

Subject Name: Complex Variables and Partial Differential Equations

Time: 10:30 AM TO 01:00 PM **Total Marks: 70**

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

			Mark
			S
Q.1	(a)	Show that the function $u = x^2 - y^2$ is harmonic and find the	03
		corresponding analytic function.	
	(b)	Find the fourth roots of -1 .	04
	(c)	(i) Find the image of the infinite strip $0 \le x \le 1$ under the transformation	03
	` '	w = iz + 1. Sketch the region.	
		(ii) Write the function $f(z) = z + \frac{1}{z}$ in the form $f(z) = u(r, \theta) + iv(r, \theta)$.	04
Q.2	(a)	Evaluate $\int_C (x^2 + ixy) dz$ from (1,1) to (2,4) along the curve $x = t$, $y = t^2$.	03
	(b)	Find the bilinear transformation which transforms $z = 2,1,0$ into	04
	` ′	w = 1, 0, i	
	(c)	(i) Evaluate $\oint_C \frac{dz}{z^2 + 1}$, where C is $ z + i = 1$, counter clockwise.	03

(ii) Find the radius of convergence of
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!} z^n$$
.

(c) (i) Find the roots of the equation
$$z^2 + 2iz + (2-4i) = 0$$
.

(ii) Find the roots of $\log z = i\frac{\pi}{2}$.

(ii) Find the roots of
$$\log z = i\frac{\pi}{2}$$
.

Q.3 (a) Find $\oint_C \left(\frac{3}{z-i} - \frac{6}{(z-i)^2}\right) dz$, where $C: |z| = 2$.

(b) Find the residues of
$$f(z) = \frac{1}{(z-1)^2(z-3)}$$
, has a pole at $z=3$ and a pole

of order 2 at
$$z = 1$$
.
Expand $f(z) = \frac{1}{(z+1)(z+3)}$ in a Laurent series for the regions $(i)|z| < 1$
 $f(z) = \frac{1}{(z+1)(z+3)}$, $f(z) = \frac{1}{(z+1)(z+3)}$ in a Laurent series for the regions $f(z) = \frac{1}{(z+1)(z+3)}$

Q.3 (a) Evaluate
$$\oint_C \frac{e^z}{z+i} dz$$
, where $C: |z-1| = 1$.

(b) Evaluate by using Cauchy's residue theorem
$$\int_C \frac{5z-2}{z(z-1)} dz$$
; $|z| = 2$.

(ii)1 < |z| < 2, (iii)|z| > 2.

- 03 **Q.4** (a) Solve yq - xp = z. (b) Derive partial differential equation by eliminating the arbitrary constants 04 *a* and *b* from $z = (x^2 + a)(y^2 + b)$. (i) Solve the p.d.e. $r - 3as + 2a^2t = 0$. 03 (ii) Find the complete integral of p(1+q) = qz. 04 Find the solution of (y-z)p+(z-x)q=x-y. 03 0.4
 - Form the partial differential equation by eliminating the arbitrary function 04 from $\phi(x+y+z, x^2+y^2+z^2)=0$. (c) (i) Solve the p.d.e. s + p - q = z + xy. 03
 - 04 (ii) Solve by Charpit's method $q = 3p^2$.
- (a) Solve $(D^2 + 2DD' + D'^2)z = e^{2x+3y}$ 03 **Q.5 (b)** Solve the p.d.e. $u_x = 4u_y$, $u(0, y) = 8e^{-3y}$ using the method of separation 04 of variables.
 - **07** Find the solution of the wave equation $u_{tt} = c^2 u_{xx}$, $0 \le x \le L$ with the conditions $u(0,t) = u(L,t) = 0; t > 0, \ u(x,0) = \frac{\pi x}{L}, u_t(x,0) = 0; 0 \le x \le L.$

- **Q.5** (a) Solve the p.d.e. r + s + q - z = 0. 03
 - **(b)** Solve $xu_x 2yu_y = 0$ using the method of separation of variables. 04
 - Find the solution of $u_t = c^2 u_{xx}$ together with the initial and boundary **07** conditions $u(0,t) = u(l,t) = 0; t \ge 0$ and $u(x,0) = \sin \frac{\pi x}{l}; 0 \le x \le l$.