

Enrolment N	No.
-------------	-----

www.FirstRanker.com www.FirstRanker.com GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- IV EXAMINATION - SUMMER 2020

Subject Code: 3140610 Date:02/11/2020

Subject Name: Complex Variables and Partial Differential Equations

Time: 10:30 AM TO 01:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

			Mark
			s
Q.1	(a)	Show that the function $u = x^2 - y^2$ is harmonic and find the corresponding analytic function.	03
	(b)		04
	(c)	(i) Find the image of the infinite strip $0 \le x \le 1$ under the transformation $w = iz + 1$. Sketch the region.	03
		(ii) Write the function $f(z) = z + \frac{1}{z}$ in the form $f(z) = u(r, \theta) + iv(r, \theta)$.	04
Q.2	(a)	Evaluate $\int_{C} (x^2 + ixy)dz$ from (1,1) to (2,4) along the curve $x = t$, $y = t^2$.	03
	(b)	Find the bilinear transformation which transforms $z = 2,1,0$ into	04
		w = 1,0,i	
	(c)	(i) Evaluate $\oint_C \frac{dz}{z^2 + 1}$, where C is $ z + i = 1$, counter clockwise.	03
		(ii) Find the radius of convergence of $\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!} z^n$.	04
		OR	
	(c)	(i) Find the roots of the equation $z^2 + 2iz + (2-4i) = 0$.	03
		(ii) Find the roots of $\log z = i \frac{\pi}{2}$.	04
Q.3	(a)	Find $\oint_C \left(\frac{3}{z-i} - \frac{6}{(z-i)^2}\right) dz$, where $C: z = 2$.	03

- (b) Find the residues of $f(z) = \frac{1}{(z-1)^2(z-3)}$, has a pole at z=3 and a pole of order 2 at z=1.
- (c) Expand $f(z) = \frac{1}{(z+1)(z+3)}$ in a Laurent series for the regions (i)|z| < 1, (ii)1 < |z| < 3, (iii)|z| > 3.

OR

- Q.3 (a) Evaluate $\oint_C \frac{e^z}{z+i} dz$, where C: |z-1| = 1.
 - (b) Evaluate by using Cauchy's residue theorem $\int_C \frac{5z-2}{z(z-1)} dz$; |z|=2.

(ii)1 < |z| < 2, (iii)|z| > 2.

Q.4	(a)	Solve $yq - xp = z$.	03
	(b)	Derive partial differential equation by eliminating the arbitrary constants a and b from $z = (x^2 + a)(y^2 + b)$.	04
	(c)	(i) Solve the p.d.e. $r - 3as + 2a^2t = 0$.	03
		(ii) Find the complete integral of $p(1+q) = qz$.	04
		OR	
Q.4	(a)	Find the solution of $(y-z)p+(z-x)q=x-y$.	03
	(b)	Form the partial differential equation by eliminating the arbitrary function	04
		from $\phi(x+y+z,x^2+y^2+z^2)=0$.	
	(c)	(i) Solve the p.d.e. $s + p - q = z + xy$.	03
		(ii) Solve by Charpit's method $q = 3p^2$.	04
Q.5	(a)	Solve $(D^2 + 2DD' + D'^2)z = e^{2x+3y}$	03
	(b)	Solve the p.d.e. $u_x = 4u_y$, $u(0, y) = 8e^{-3y}$ using the method of separation	04
		of variables.	
	(c)	Find the solution of the wave equation $u_n = c^2 u_{xx}$, $0 \le x \le L$ with the	07
	(3)	The the solution of the wave equation $u_y = c u_{xx}$, $v \le x \le L$ with the	

conditions $u(0,t) = u(L,t) = 0; t > 0, u(x,0) = \frac{\pi x}{L}, u_t(x,0) = 0; 0 \le x \le L.$

- Q.5 (a) Solve the p.d.e. r + s + q z = 0. 03
 - (b) Solve $xu_x 2yu_y = 0$ using the method of separation of variables. 04
 - (c) Find the solution of $u_t = c^2 u_{xx}$ together with the initial and boundary 07 conditions $u(0,t) = u(l,t) = 0; t \ge 0$ and $u(x,0) = \sin \frac{\pi x}{l}; 0 \le x \le l$.

