\qquad
www.FirstRanker.com
www.FirstRanker.com
GUJARAT TECHNOLOGICAL UNIVERSITY
BE - SEMESTER- IV EXAMINATION - SUMMER 2020
Subject Code: 3140611
Date:04/11/2020

Subject Name: Fluid Mechanics \& Hydraulics
 Time: 10:30 AM TO 01:00 PM
 Instructions:

Total Marks: 70

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Define density, specific volume \& surface tension.03
(b) The velocity distribution for flow over a flat plate is given by 04$\mathrm{u}=0.75 \mathrm{y}-\mathrm{y}^{2}$ in which u is the velocity in metre per second at adistance y metre above the plate. Determine the shear stress at$\mathrm{y}=0.20 \mathrm{~m}$. Take dynamic viscosity of fluid as 8.0 poise.
(c) Explain the phenomenon of capillarity.Obtain an expression for 07 capillary rise of a liquid.
Q. 2 (a) Define atmospheric, absolute \& vaccum pressure. 03
(b) Explain hydrostatic paradox. 04
(c) Write short note on manometers. 07
(c) State \& prove Pascal's law. 07
Q. 3 (a) Define total pressure, centre of pressure \& buoyancy. 03
(b) A rectangular plane surface is immersed vertically in water such that 04its upper edge is touching free surface of liquid. Show that the depthof centre of pressure is $2 / 3 \mathrm{~d}$ for rectangular surface of width b anddepth d.
(c) Define metacentre \& metacentric height. How will you determine 07 metacentric height of a floating body experimentally? Explain with neat sketch.
OR
Q. 3 (a) Define stream lines, streak lines \& flow net. 03
(b) Differentiate between (i) Uniform \& non uniform flow (ii) Sub 04 critical \& super critical flow.
(c) State \& prove Bernoulli's equation \& write assumption made for 07 such a derivation.
Q. 4 (a) Define orifice, mouthpiiece \& notches. 03 03
(b) Find the discharge of water flowing over a rectangular notch of 2.0 04 m length when the constant head over the notch is 500 mm . Take C_{d} $=0.62$
(c) Differrentiate between small \& large orifice.Obtain an expression 07 for discharge through large orifice.
OR
Q. 4 (a) Define major energy losses in pipe, hydraulic gradient line \& total 03 energy line.
(b) Three pipes of lengths $800 \mathrm{~m}, 500 \mathrm{~m}$ and 400 m and of diameters 04$500 \mathrm{~mm}, 400 \mathrm{~mm}$ \& 300 mm respectively are connected in series.These pipes are to be replaced by a single pipe of length 1700 m .Find the diameter of the single pipe.(c) Define viscous flow. Derive expression for Hagen-Poiseuille's07formula.
(b) A sluice get discharges water into a horizontal rectangular channel $\mathbf{0} 4$ with a velocity of $10 \mathrm{~m} / \mathrm{sec} \&$ depth of flow of 1 m .Determine the depth of flow after the jump \& consequent losses in total head.
(c) Define gradually varied flow. Derive equation of gradually varied $\mathbf{0 7}$ flow.

OR

Q. 5 (a) Define dimensional homogeneity, similitude \& undistorted models 03
(b) Explain method of selecting repeating variables. 04
(c) The pressure difference Δ p in a pipe of diameter D and length 1 due $\mathbf{0 7}$ to viscous flow depends on the velocity V , viscosity $\boldsymbol{\mu} \boldsymbol{\&}$ density ρ. Using Buckingham's π theorem obtain an expression for $\Delta \mathrm{p}$.

