www.FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- IV EXAMINATION - SUMMER 2020

Subje	ct Code	e: 314	F100	2				Date:26/10/2020
			_		_	_	_	

Subject Name: Analog Circuit Design

Time: 10:50 AW 10 01:00 PW	Time: 10:30 AM TO 01:00 PM	Total Marks: 70
----------------------------	----------------------------	-----------------

Instructions:

1. Attempt all questions.

- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

	3.	Figures to the right indicate full marks.	
			MARKS
Q.1	(a)	List ideal characteristics of OP-AMP.	03
	(b)	Define following terms.	04
		Slew Rate, CMRR, SVRR, I/P offset voltage.	
	(c)	Explain inverting differentiator circuit using OP-AMP.	07
Q.2	(a)	Derive gain expression for voltage series F/B amplifier using OP-AMP.	03
	(b)	Explain window detector using OP-AMP.	04
	(c)	Write and explain differential amplifier using two OP-AMP.	07
		OR	
	(c)	Explain Schmitt trigger circuit operation using OP-AMP.	07
Q.3	(a)	Explain circuit made up of OP-AMP that does subtraction.	03
	(b)	Explain All pass filter using OP-AMP.	04
	(c)	Explain chebyshev filter using OP-AMP with derivations.	07
0.4		OR	0.2
Q.3	(a)	Define following terms.	03
		Lock Range for PLL, Capture Range for PLL, Frequency Stability for	
	(b)	Oscillators.	0.4
	(b)	Explain class B push pull power amplifier.	04 07
	(c)	Draw and explain triangular wave generator using OP-AMP.	U/
Q.4	(a)	Explain I to V converter using OP-AMP.	03
۲۰۷	(b)	Explain phase shift oscillator using OP-AMP in detail.	04
	(c)	Explain CE short-circuit current gain including resistive load R _L .	07
	(0)	OR	
Q.4	(a)	Explain voltage limiter circuit using OP-AMP with suitable example.	03
	(b)	Draw and explain class A power amplifier.	04
	(c)	Derive expression for trans-conductance gm in Hybrid – Π model.	07
Q.5	(a)	Design Monstable multivibrator for $T_P = 11$ millisecond, take $C = 0.01$	03
	. ,	milliferad.	
	(b)	Explain PLL using functional block diagram.	04
	(c)	Explain 555 A-stable multivibrator.	07
		OR	
Q.5	(a)	Write short note on adjustable voltage regulator.	03
	(b)	Design A-stable multivibrator using IC 555 for Ton = 50% of T, take F= 1	04
		KHz, $C = 0.1$ milliferad.	_
	(c)	Explain Monostable multivibrator using IC 555.	07
