FirstRanker.com Firstranker's choice www.FirstRanker.com Seat No.: _

www.FirstRanker.com Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- IV EXAMINATION - SUMMER 2020 Date:27/10/2020 Subject Code: 3141906 **Subject Name: Fluid Mechanics and Hydraulics Machines Total Marks: 70** Time: 10:30 AM TO 01:00 PM **Instructions:** 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. Marks 03 **Q.1** (a) Explain hypothesis of continuum. State and prove Pascal's law. 04 **(b)** Derive Euler's equation of motion. State assumptions made. How 07 (c) will you obtain Bernoulli's equation from Euler's equation? **Q.2** (a) How repeating variables selected for dimensionless analysis? 03 With neat sketch explain the conditions of equilibrium for floating 04 **(b)** body. (c) Define uniform flow. Obtain stream and velocity potential function 07 when flow is parallel to x-axis. Also plot uniform flow (parallel to x axis). OR Derive from first principles, the conditions for ir-rotational flow. 07 (c) Prove that for potential flow, both the stream function and velocity potential function satisfy the Laplace equation. **(a)** Q.3 Differentiate between stream and streak line. 03 Define centre of pressure. Obtain expression for centre of pressure 04 **(b)** for vertical plane surface submerged in liquid. The water is flowing through a taper pipe of length 100 m having 07 (c) diameters 600 mm at the upper end and 300 mm at the lower end, at the rate of 50 lps. The pipe has slope of 1 in 30. Find the pressure at the lower end if pressure at the higher level is 19.62 N/cm^2 . OR **Q.3** (a) 03 The stream function for two dimensional flow is given by $\Psi = 2xy$. Find velocity potential function φ . (b) Define and explain the terms: HGL, TEL 04 07 (c) State Buckingham's π – theorem. The efficiency η of a fan depends on density ρ , dynamic viscosity μ of the fluid, angular velocity ω , diameter D of the rotor and discharge Q. Express η in terms of dimensionless parameters. 0.4 (a) Derive the expression of force in x and y direction when jet striking 03 symmetrical curved vane tangentially at one tip and leaving other end. (b) Prove that maximum velocity in a circular pipe for viscous flow is 04 equal to two times the average velocity of flow. Derive Darcy – Weisbach equation. 07 (c) 1 www.FirstRanker.com

www.FirstRanker.com

03

- (a) Define priming. Why priming is necessary in centrifugal pump? Q.4
 - (b) Classify hydraulic turbines with examples based on following 04 criteria:
 - i. Energy at inlet
 - ii. Direction of flow through runner
 - iii. Head at the inlet of turbine
 - iv. Specific speed of turbine
 - (c) A Pelton wheel is to be designed for the following specifications: 07 Shaft power = 11.772 kW, Head = 380 m, Speed = 750 rpm, Overall efficiency = 86%, Jet diameter is not to exceed one-sixth of the wheel diameter. Determine:
 - i. The wheel diameter
 - ii. The number of jets required
 - iii. Diameter of the jet.
 - iv.

(a) Explain the advantages of Kaplan turbine over Fransis turbine. **Q.5** 03

- Define cavitation. State necessary precautions against cavitation in **(b)** 04 pump.
- 07 (c) Why governing of turbine is required? Explain governing of Pelton wheel with neat sketch.

OR

- (a) Describe working of hydraulic accumulator with neat sketch. **Q.5** 03 04
 - (b) Write short note on NPSH.
 - Explain briefly different losses and efficiencies associated with 07 (c) centrifugal pump.

