

GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-IV (NEW) EXAMINATION – WINTER 2020

	Subject Code:2140001 Date:09/02/20 Subject Name:Mathematics-4					
	Time	e:02:30 PM TO 04:30 PM Total Marks:4 ctions:	Total Marks:47			
		 Attempt any THREE questions from Q.1 to Q.6. Q.7 is compulsory. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. 				
			MARKS			
Q.1	(a) (b)	Define following terms: (a) Analytic function (b) continuous function Determine the bilinear transformation which maps the points $z = 2, 1, 0$ into the points $w = 1, 0, i$ respectively.	03 04			
	(c)	Use Gauss-elimination method (with Partial Pivoting) to obtain the solution of the system $2x + 2y + z = 6$, $4x + 2y + 3z = 4$, $x + y + z = 0$	07			
Q.2	(a)	Using the C-R equations, show that $f(z) = z^3$ is analytic everywhere.	03			
	(b)	Evaluate $\iint_C \frac{5z-2}{z(z-1)} dz$, where C is the circle $ z = 3$.	04			
	(c)	Show that $u(x, y) = x^2 - y^2$ is Harmonic. Find the corresponding analytic function $f(z) = u + i v$.	07			
Q.3	(a)	Expand $f(z) = e^{-z}$ in a Taylor series about $z = 0$.	03			
	(b)	Determine the residues of $f(z) = \frac{(z-3)}{(z+1)(z+2)}$ at each of its poles in the finite z plane.	04			
	(c)	plane. Determine the Laurent series expansion of $f(z) = \frac{1}{(z-1)} - \frac{1}{(z-2)}$ valid for (a) $ z < 1$ (b) $1 < z < 2$	07			
Q.4	(a)	Check whether the function $f(z) = \overline{z} + 1$ is analytic or not at any point.	03			
	(b)	Find the radius of convergence of the $\sum_{n=0}^{\infty} \frac{z^n}{n!}$	04			
	(c)	Using Residue theorem, evaluate $\int_C \frac{z^2}{(z-1)^2(z+2)} dz$ where C is circle $ z = 3$	07			
Q.5	(a)	Perform five iterations of Bisection method to find the real root of equation	03			

- Q.5 (a) Perform five iterations of Bisection method to find the real root of equation $x^3 x 1 = 0$.
 - (b) Solve the given System of Linear equations by using Gauss Elimination method: x+3y+2z=5, 2x+4y-6z=-4, x+5y+3z=10
 - Use second order Runge-Kutta method to solve $\frac{dy}{dx} = x y^2$, y(0) = 1 and find y(0.2) with h = 0.1

- www.FirstRanker.com www.FirstRanker.com
 (a) Perform three iteration of secant method to find approximate root of equation 03 $x^3+x^2-3x-3=0$.
 - Use Euler's method to solve $\frac{dy}{dx} = x + 2y$, y(1) = 1. Hence find y(1.5) with **(b)** h = 0.1.
 - (c) Using Lagrange's interpolating polynomial, find f(10) from the given data: **07**

Ī	x	5	6	9	11
	f(x)	12	13	14	16

Q.7 Find a real root of $x^3+x-1=0$, correct to two decimal places using Newton-05 Raphson method.

OR

Construct an Interpolating polynomial			ynomial v	which takes the following values:		
	v	1	2		7	0

x	1	2	7	8
у	1	5	5	4

MMM.FirstRanker.com

04

05