

GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-V (NEW) EXAMINATION - WINTER 2020

Subject Code:3151104 Date:01/02/2021

Subject Name: Analog and Digital Communication

Time:10:30 AM TO 12:30 PM Total Marks: 56

Instructions:

- 1. Attempt any FOUR questions out of EIGHT questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

			MARKS
Q.1	(a)	Draw the detailed Block Diagram of Communication System.	03
	(b)	Why is Modulation required in Communication? Discuss in detail.	04
	(c)	(i) Discuss Channel Capacity relative to Channel Bandwidth and Signal Power.	04
		(ii) Discuss the Trade off between Bandwidth and SNR.	03
Q.2	(a)	Compare Analog and Digital Communication.	03
C	(b)	A certain transmitter radiates 9kW with the carrier	04
		unmodulated and 10.125kW when the carrier is	
		sinusoidally modulated. Calculate the modulation index. If another sine wave is simultaneously transmitted with	
		modulation index 0.4, determine the total radiated power.	
	(c)	Derive expression of Total transmission bandwidth	07
		required for DSBSC and SSB in terms of modulating	
		signal frequency. Make suitable comment for bandwidth efficient Amplitude Modulation.	
Q.3	(a)	Compare Amplitude Modulation and Angle Modulation.	03
	(b)	Given modulating bit stream is 10010011. Draw the	04
		ASK,FSK and BPSK signals. Also draw the waveforms for carrier and modulating bit stream.	
	(c)	Draw and explain every block in Superheterodyne	07
	(-)	receivers.	
0.4	()		0.2
Q.4	(a)	Enlist various methods of FM generation. Explain any one of them.	03
	(b)	Explain QPSK modulator with schematic diagram.	04
	(c)	Explain Preemphasis and Deemphasis in FM	07
		broadcasting with block diagram, filter circuits and	
Q.5	(a)	frequency response. Draw the detailed block diagram of PCM.	03
Q.S	(b)	Calculate the bit rate for T1 carrier system.	04
	(c)	Explain DPCM with block diagram.	03
		With mathematical analysis prove that SQNR is improved in DPCM as compared to PCM.	04
Q.6	(a)	State 'Sampling Theorem'. Discuss Nyquist Rate of	03

IIKCI	3 (11)	sampling. www.FirstRanker.com www.First	Ranker.com
	(b)		04
		at a rate 33.34 % higher than the Nyquist rate. Calculate	
		the sampling rate. The maximum acceptable error in the	
		sample amplitude (the maximum quantization error) is	
		0.5% of the peak amplitude m_p . The quantized samples	
		are binary coded. Find the bit rate. Find the minimum	
		bandwidth of a channel required to transmit the coded	
		binary signal. If 24 such signals are time division	
		multiplexed, determine the maximum transmission	
		bandwidth required to transmit the multiplexed signal.	
	(c)	Explain 'Slope Overload' with diagram.	04
		Derive the condition to avoid slope overload considering	03
		$x(t)=A \cos(\omega_m t)$ as input signal, δ as step size and T_s as	
		sampling interval.	
Q.7	(a)	Enlist the properties of Line Codes.	03
	(b)	Explain how to read an eye diagram.	04
	(c)	Explain Data Scrambling with suitable example.	07
Λ 0	(a)	Cive the full forms of (i) ISI (ii) DSD (iii) AMI	0.2
Q.8	(a)	Give the full forms of (i) ISI (ii) PSD (iii) AMI	03
	(b)	Draw the signals for Unipolar NRZ, Unipolar RZ, Polar	04
	(.)	NRZ, Polar RZ for 10100111 data.	07
	(c)	Explain Clock Recovery in PCM system	07

MMM FilstRanker.com