Date:09/02/2021

Total Marks:47

GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-IV (NEW) EXAMINATION - WINTER 2020

Subject Code:2141905
Subject Name:Complex Variables and Numerical Methods

Time:02:30 PM TO 04:30 PM

Instructions:

- 1. Attempt any THREE questions from Q.1 to Q.6.
- 2. Q.7 is compulsory.
- 3. Make suitable assumptions wherever necessary.
- 4. Figures to the right indicate full marks.

MARKS

- Q.1 (a) Separate real and imaginary parts of $f(z) = e^{(z+2)}$, and also prove that it is analytic everywhere.
 - (b) Use De Moiver's theorem and find 4th root of unity in the complex plane. **04**
 - (c) Use Gauss-Jacobi method to determine roots of the following equations 20x + y 2z = 17 3x + 20y - z = -182x - 3y + 20z = 25
- Q.2 (a) Evaluate the following integral along the curve $z(t) = t + it^2$

$$\int_{0}^{2+4i} Re(z)dz$$

- (b) Evaluate $\oint \frac{\cos \pi z}{z-1} dz$ where C is the circle

 1) |z| = 2 2) |z| = 1/2
- (c) Verify that $u = x^2 y^2 y$ is harmonic in the whole complex plane and finds it's conjugate harmonic function v.
- Q.3 (a) Obtain the Taylor's series of $f(z) = \sin z$ in powers of $\left(z \frac{\pi}{4}\right)$.
 - (b) Find the center and radius of convergence of the power series $\sum_{n=0}^{\infty} (n+2i)^n z^n$.
 - (c) Find the Laurent's series expansion of $f(z) = \frac{1}{(z+1)(z-2)}$ in the region

 1) 1 < |z| < 2 2) |z| > 2
- Q.4 (a) Find the Maclaurin's series of $f(z)=\sin^2 z$ 03
 - (b) Find all values of z such that $e^z = 1 + i$
 - (c) Evaluate $\oint \frac{\cos z}{z^2 4} dz$ counterclockwise around C: $|z| = \frac{5}{2}$
- Q.5 (a) Use Bisection method to find the real root of $x^3 4x 9 = 0$. (Do 4 iterations)
 - (b) Using Newton's divided difference interpolation formula, compute f(10.5) from the following data:

X	10	11	13	17
f(x)	2.3026	2.3979	2.5649	2.8332

Firstranger Use Simpson's 3/8 will a sind the error involved in the pross. and hence calculate $\log_e 2$. Also, find the error involved in the pross.

$$\int_{0}^{3} \frac{dx}{1+x}$$

- (a) Approximate the root of the equation $e^x 2\cos x = 0$, by three **Q.6** 03 iterations of Newton Raphson method, taking initial approximation as $x_0 = 2$.
 - (b) Find an approximate value of f(3.6) using Newton's backward 04 difference formula from the following data:

x	0	1	2	3	4
f(x)	-5	1	9	25	55

- Using power method, determine the largest eigenvalue and the **07** corresponding eigenvector of the matrix = $\begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$, taking initial eigenvector $x_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$.
- **Q.7** Using three point Gaussian formula evaluate the following integral and 05 compare with the exact value.

$$\int_{-1}^{1} \frac{dx}{1+x^2}$$
OR

Q.7 Solve the following system of linear equations using Gauss Elimination 05

$$x + y + z = 9$$
; $2x - 3y + 4z = 13$; $3x + 4y + 5z = 40$