

GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-IV (NEW) EXAMINATION - WINTER 2020

Subject Code: 2140105 Date: 09/02/2021

Subject Name: Numerical Methods

Time: 02:30 PM TO 04:30 PM Total Marks: 56

Instructions:

- 1. Attempt any FOUR questions out of EIGHT questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

								MARKS			
Q.1	(a)	Define and name the methods to solve differential equations.									
	(b)										
	(c)	Describe the fitting of $y = ae^{px}$ for the data,									
		x y	5.012	2 10	31.62						
Q.2	(a)	(a) State the formulae for Newtons backward interpolation methods. Specify the methods used for unequal intervals									
	(b)	Using the fits into the x	0 0	the poly	5 147	04					
	()	01.		C			1 0 1	^ -			

(c)			-	for	every	subinterval	from	the	07
	followin	ıg data:			10				
	X	0		3		8			
	у	1	0	2		3			

- Q.3 (a) Use Gauss elimination solve x+2y+z=8, 2x+3y+4z=20, 4x+3y+2z=16.

 (b) Use Transported rule to evaluate $\int_{-1}^{3} 1 dx$ taking 4
 - (b) Use Trapezoidal rule to evaluate $\int_{1}^{3} \frac{1}{x} dx$ taking 4 subintervals.
 - (c) Describe the Newton Raphson method in brief and solve $e^x = 5x$
- **Q.4** (a) Use Gauss Jordan method to solve 10x+y+z=12, x+10y+z=12, x+y+10z=12.
 - (b) Use Simpsons 3/8 rule to evaluate, $\int_{0}^{6} \frac{1}{1+x^2} dx$
 - (c) Describe Secant method and use it to solve $x^3 5x + 1 = 0$ in (0,1).
- Q.5 (a) State the Gauss seidel method for laplace equation 03

Solve heat equation $\frac{\partial^2 u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ with u(x,0)=0, u(0,t)=0 and

 $u(1,t)=t. \text{ with } k = \frac{1}{8} \text{ and } h = \frac{1}{4}.$

- State the Taylors method and solve equation, 07 $\frac{dy}{dx} = y - \frac{2x}{y} \quad y(0) = 1.$
- State the finite difference quotients for first and second 03 **Q.6** order derivatives.
 - Solve y''+y+1=0 with y(0)=0, y(1)=0, Using h=0.504 implement finite difference approach.
 - State the Picards formula and solve the equation for x=0.2, **07** $\frac{dy}{dx} = x^2 - y$ y(0)=1.
- **Q.7** Discuss the difference between finite difference and finite 03 element approach
 - Describe the Rayleigh Ritz method in brief. 04
 - Solve using Runge Kutta 4th order method **07** $\frac{dy}{dx} = x + y$ y(0)=1using h=0.05 for y(0.1).
- Discuss the shooting approach for boundary value **Q.8** 03 problems.
 - **(b)** Describe the Galerikin approach in brief. 04
 - ach on using y(0)=y(1)=0. Solve using the equation using Galerikin approach, **07** y"+y=-x, 0 < x < 1 and y(0)=y(1)=0.