GUJARAT TECHNOLOGICAL UNIVERSITY **BE- SEMESTER-V (NEW) EXAMINATION - WINTER 2020** Date:27/01/2021 Subject Code:3153617 **Subject Name:Basics of Mass Transfer** Time:10:30 AM TO 12:30 PM **Total Marks: 56** ## **Instructions:** - 1. Attempt any FOUR questions out of EIGHT questions. - 2. Make suitable assumptions wherever necessary. - 3. Figures to the right indicate full marks. | | | | MARKS | |-----|--------------|---|-------| | Q.1 | (a) | Define: (a) HETP (b) Humid Heat (c) Reflux ratio | 03 | | | (b) | Mention the factors affecting choice of separation method. | 04 | | | (c) | Explain in detail about various application of mass transfer | 07 | | Q.2 | (a) | Explain in brief about Azeotropic distillation. | 03 | | | (b) | Explain temperature and pressure dependency of diffusivity of gases and liquids. | 04 | | | (c) | Derive the relation for steady state molecular diffusion in fluids at rest and in laminar flow. | 07 | | Q.3 | (a) | Write short note on Absorption factor. | 03 | | | (b) | Define Diffusivity and state its assumptions for penetration. | 04 | | | (c) | Starting from the basics of diffusion, derive the equation to calculate N _A for steady state equimolal counter diffusion of A through B for unidirectional binary gas phase. | 07 | | Q.4 | (a) | Define relative saturation, percentage saturation and enthalpy. | 03 | | | (b) | Write down the selection criteria for the solvent in liquid | 04 | | | | extraction process. | | | | (c) | A gas (B) – benzene (A) mixture is saturated at 1 std atm, 50° C. Calculate the absolute humidity if B is (a) nitrogen and (b) carbon dioxide. Vapor pressure of nitrogen at 50° C = 0.362 std atm | 07 | | Q.5 | (a) | Discuss Raoult's law for ideal solutions. | 03 | | | (b) | With respect to interphase mass transfer, explain mass transfer operation between two immiscible phases. | 04 | | | (c) | CO ₂ and Air are in equimolal counter diffusion with each other in the tube of 50 mm diameter and 1 m length. The total pressure is 1 atm and the temperature is 25°C. The partial pressure of CO ₂ at one end of the tube is 190 mm Hg while at the other end of the tube is 95 mm Hg. Estimate the mass transfer rates (in kg/s) of CO ₂ and air through the tube. Diffusivity is 0.16 x 10 ⁻⁴ m ² /s. | 07 | | Q.6 | (a) | Explain in brief about Two resistance theory. | 03 | | - | (b) | Explain with neat sketch the rate of drying curve in detail. | 04 | | | (c) | Methane diffuses at steady state through a tube containing | 07 | | | | helium for the case equimolar counter diffusion. At point 1, the partial pressure of methane is 55 kPa and at point 2, 0.03 m apart is 15 kPa. The total pressure is 101.325 kPa and | | FirstRanker.com Firstranker's choiceperature is 208 First Ranker.com First Ranker's choiceperature is 208 First Ranker.com pressure of methane at point 0.02 m apart from point 1 for the above case. - **Q.7** Write down the various applications of liquid-liquid 03 (a) extraction. - Discuss the concept with principle of crystallization. 04 **(b)** - A continuous rectification column is used to separate a binary (c) mixture of A & B. Distillate is produced at a rate 100 kmol/h, containing 98 mole% A. In the enriching section the mole fraction of A in the liquid and vapour from two adjacent plates are as follows. | X | у | |------|------| | 0.65 | 0.82 | | 0.56 | 0.76 | If the latent heat of vaporization is same for all mixtures and if the feed is a saturated liquid, calculate i) Reflux ratio ii) Vapour flow rate in stripping section - **Q.8** (a) Write a short note on flash distillation. - 04 **(b)** Explain in brief about Fluidized bed dryer. - (c) Compute the vapor-liquid equilibria at constant pressure of 1 standard atmosphere for mixtures of n-heptane (A) with noctane (B), which may be expected to form ideal solutions. Also calculate the relative volatility for each temperature and its average value. | T (°C) | 98.4 | 105 | 110 | 115 | 120 | 125.6 | | | | | |---------------------|------|-----|------|------|------|-------|--|--|--|--| | p _A ,mm | 760 | 940 | 1050 | 1200 | 1350 | 1540 | | | | | | Hg | | | | | | | | | | | | p _B , mm | 333 | 417 | 484 | 561 | 650 | 760 | | | | | | Hg | | | | | | | | | | | | ************* | | | | | | | | | | | | ******* | | | | | | | | | | | | Mankileikeikea | .d. | 07 03 07