Ranker.com www.FirstRanker.com www.FirstRanker.com ## GUJARAT TECHNOLOGICAL UNIVERSITY BE- SEMESTER-IV (NEW) EXAMINATION - WINTER 2020 Subject Code:3140603 Date:11/02/2021 **Subject Name:Structural Analysis-I** Time:02:30 PM TO 04:30 PM **Total Marks:56 Instructions:** 1. Attempt any FOUR questions out of EIGHT questions. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. (a) Differentiate Plane frame and Grid 03 **Q.1 (b)** State and explain principle of superposition. 04 (c) Using Conjugate beam method, find the slope and deflection in terms of EI at 07 - (a) Explain Maxwell's theorem of reciprocal deflections. 03 **Q.2 (b)** Differentiate Conjugate beam and real beam 04 - Find slope at point A and B & deflection at point C in terms of EI for the beam 07 shown in figure by Macaulay's method. **Q.3** (a) Differentiate between long and short column free end of the cantilever beam shown in figure. - (b) A masonry wall, 5 m high, is of solid rectangular section, 3 m wide and 1 m 04 thick. A horizontal wind pressure of 1.2 kN/m² acts on the 3 m side. Find the maximum and minimum stress induced on the base, if unit weight of masonry is 22.4 kN/m^3 . - A rectangular column section ABCD having AB = CD = 400 mm and BC = 400 mm07 AD = 300 mm carries a compressive load 300 kN at corner B. Find the stress at each corner A, B, C and D and draw stress -distribution diagram for each side. - (a) Discuss Stability checks for a dam. **Q.4** - A "T" section is having flange with 100 mm and total depth 80 mm. The 04 thickness of flange and web is 10 mm. The length of column is 3 m and it is hinged at both ends. If $E = 2.1 \times 10^5 \text{ N/mm}^2$, find Euler' buckling load. - The external and internal diameter of a hollow cast iron column are 200 mm **07** and 150 mm respectively. If column is hinged at both ends having a length of 4 m, determine the crippling load using Rankine formula. Take f_s = 550N/mm^2 and $\alpha = 1/1600$. - (a) Explain advantages of three hinged arch over beam. Q.5 03 03 03 Firstrance hinged parabolic. Firstrance hinged parabolic. Firstrance hinged parabolic. Firstrance hinged parabolic. First Rance parabolic span of 20 m and a central rise of 5m. It carries a concentrated load of 120 kN at 15 m from left support and a uniformly distributed load 20 kN/m over left half portion. Determine the moment, thrust and radial shear at a section 4 m from left support. - Define Core of the Section. Derive and locate the same for a Circular cross 03 **Q.6** - (b) A thin cylindrical shell of internal diameter d, wall thickness t and length I, is 04 subjected to internal pressure p. Derive the expression for change in volume of the cylinder - A thin cylindrical shell of 600 mm diameter is 1500 mm long and 10 mm **07** thick. It is subjected to internal pressure of 2 MPa. Calculate the change diameter, length and volume. Take E = 200 GPa and poisson's ratio = 0.27. - **Q.7** State basic difference between fixed and simply supported beams. 03 (a) - (b) A fixed beam of 10 m span carries central point load of 100 kN. Find fixed 04 end moment equation using area moment method. - Using method of consistent deformation, analyze the propped cantilever beam 07 shown in Figure, and draw shear force and bending moment diagrams. - Define resilience, proof resilience and modulus of resilience. **Q.8** (a) - Derive formula for strain energy due to sudden loading. 04 **(b)** - A steel bar 1 m length is subjected to a pull such that the maximum stress is equal to 150 N/mm². Its cross section is 200 mm² over length of 950 mm and for the middle 50 mm length the sectional area is 100 mm^2 . If $E = 2 \times 10^5$ N/mm², Calculate strain energy stored in the bar. 03 07