

GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-VI (NEW) EXAMINATION - WINTER 2020

Subject Code:2160902 Date:27/01/2021

Subject Name:Power Electronics – II

Time:02:00 PM TO 04:00 PM Total Marks: 56

Instructions:

- 1. Attempt any FOUR questions out of EIGHT questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

			MARKS
Q.1	(a)	Give classification of inverters. Draw circuit diagram of 1-phase half bridge center tapped inverter.	03
	(b)	Draw phase voltage and line voltage waveform for 120 ^o conduction of 3-phase H bridge inverter.	04
	(c)	Draw circuit diagram of 3-phase cycloconverter. Comment on output harmonics in the cycloconverter.	07
Q.2	(a)	Define modulation index. What is over modulation region?	03
	(b) (c)	Distinguish unipolar and bipolar PWM techniques. Explain working of line commutated inverters. Give applications of line commutated inverters.	04 07
Q.3	(a) (b)	Give comparison of AC voltage controller with inverter. Determine output harmonics for the ratio $f_c/f_m=15$ in sine PWM technique.	03 04
	(c)	Explain effect of non-sinusoidal wave on the performance of rotating AC machine.	07
Q.4	(a)	Compare space vector pulse width modulation (SVPWM) technique with sine PWM (SPWM) technique.	03
	(b)	To eliminate 5 th harmonic using selected harmonic elimination technique, how many variables are to be determined?	04
	(c)	Explain sine PWM technique with waveform. How output voltage varies with modulation index?	07
Q.5	(a)	Distinguish load commutated cycloconverter with line commutated cycloconverter.	03
	(b)	Give the reason to keep voltage to frequency ratio constant in induction motor drive. Suggest the converter that can be used for such applications.	04
	(c)	Explain the basic principle of matrix converter. Compare it with inverter and cycloconverter.	07
Q.6	(a) (b)	Explain basic principle of cycloconverter. Justify requirement of gating circuit. Mention its components.	03 04

FirstRanker.com

Firstranker's (E) Explain the working reference full wave a www. FirstRanker.com

controller connected to R-L load. Derive its equation for the average output voltages.

Q.7	(a)	Draw torque speed characteristics of induction motor. Define various region based on the slip value.	03
	(b)	Explain working principle of self-controlled synchronous motor drive using cycloconverter.	04
	(c)	Explain soft starting of induction motor. Which converter can be used for this purpose?	07
Q.8	(a)	Explain rotor resistance control of induction motor. Suggest the converter that can be used for this application.	03
	(b)	Explain working principle of self-controlled synchronous motor drive using load commutated thyristor inverter.	04
	(c)	Explain static Kramer drive.	07

www.FirstRanker.com