www.FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-VI (NEW) EXAMINATION – WINTER 2020

Subject Code:2161903	Date:01/02/2021
Subject Name: Computer Aided Design	
Time:02:00 PM TO 04:00 PM	Total Marks: 56

Instructions:

- 1. Attempt any FOUR questions out of EIGHT questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1	(a) (b) (c)	Clearly distinguish between conventional design and CAD. Explain different coordinate systems available in a CAD software. Write Breshnham's algorithm for line having slope less than 45°.	03 04 07
Q.2	(a) (b)	What is homogenous coordinate system? Explain its importance in CAD. Write the differences between (i) Raster scan and Vector scan displays (ii) Analytic curves and Synthetic curves	03 04
	(c)	Reflect the diamond shaped polygon whose vertices are A(-1,0), B(0,-2), C(1,0) and D(0,2) about i) Horizontal line $y=2$ ii) Vertical line $x=2$	07
Q.3	(a) (b)	Explain plane surface and revolution surface in detail. The endpoints of a line are $P_1(2, 7, 12)$ and $P_2(5, 6, 4)$. Determine (i) The parametric equation of line (ii) Tangent vector of the line (iii) Length of the line	03 04
	(c)	(iv) Unit vector in the direction of the line Compare wireframe, surface and solid modeling techniques.	07
Q.4	(a) (b) (c)	Discuss the structure of an IGES file. What are different representation schemes for solid models? Differentiate between CSG and B-rep. The coordinates of four control points relative to a current WCS are given by $B_o[3\ 3\ 0]^T$, $B_1[3\ 4\ 0]^T$, $B_2[4\ 4\ 0]^T$, $B_3[4\ 3\ 0]^T$. Find the equation of the resulting Bezier curve. Also find points on the curve for $U=0,\ 1/4,\ 1/2,$	03 04 07
Q.5	(a) (b) (c)	3/4, 1. List the fields of applications of FEA. Explain Penalty approach to solve FEA problem. Discuss the steps involved in finite element analysis of a problem.	03 04 07
Q.6	(a) (b) (c)	Explain curved shell elements in FEA. Discuss the properties of global stiffness matrix. Consider a two steeped bar as shown in Figure 1 below. Determine the nodal displacements if the temperature raises by 50°C. Consider $E_1 = 200 \times 10^3 \text{ N/mm}^2$ $E_2 = 70 \times 10^3 \text{ N/mm}^2$ $E_3 = 70 \times 10^3 \text{ N/mm}^2$ $E_4 = 1000 \text{ mm}^2$ $E_5 = 70 \times 10^3 \text{ N/mm}^2$	03 04 07

ranker's $700 \, \mathrm{mm}^2$, $\alpha 1 = 1$ www. HirstRanker?com $100 \, \mathrm{KN}$.

Figure 1

- Q.7 (a) With suitable examples explain plane stress condition. Which type of 03 element will you use to solve a plane stress problem with FEA?
 - (b) Derive the element stiffness matrix of a truss element. 04
 - (c) For the loading system shown in Figure 2 below, determine the displacements and stresses. Assume modulus of elasticity $E = 80 \times 10^3 \text{ N/mm}^2$, cross sectional area $A = 225 \text{mm}^2$ and $E = 90 \times 10^3 \text{ N/mm}^2$.

Figure 2

- Q.8 (a) Draw the following elements showing nodes (i) 4 noded quadrilateral (ii) 3 noded triangle (iii) 8 noded hexahedron
 - (b) A 1D spar element having a linear shape function is as shown Figure 3 below. If the temperature at node 1 is 50° C and at node 2 is -20° C, find the temperature at point P.

Figure 3

- (c) Explain in detail the discretization process with respect to

07

03

- (i) Types of elements
- (ii) Size of elements
- (iii) Location of nodes
- (iv) Number of elements
