www.FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-VII (NEW) EXAMINATION - WINTER 2020

Subject Code:2170106	Date:28/01/2021
----------------------	-----------------

Subject Name:Boundary Layer Theory

Time:10:30 AM TO 12:30 PM Total Marks: 56

Instructions:

- 1. Attempt any FOUR questions out of EIGHT questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1	(a)	Draw a path lines for laminar and turbulent flows.	03
	(b)	Draw a profile transition from laminar to turbulent flow.	04
	(c)	List out different types of wind tunnel and draw open	07
		type subsonic windtunnel	
Q.2	(a)	Write characteristics of Laminar flow.	03
	(b)	Write characteristics of Turbulent flow.	04
	(c)	Derive Couette flow equation with neat sketch.	07
Q.3	(a)	Define Laminar Sublayer.	03
	(b)	What is Boundary layer control?	04
	(c)	Derive orr-sommer field equation.	07
Q.4	(a)	Define Displacement thickness with sketch.	03
	(b)	Define momentum thickness and Energy thickness.	04
	(c)	Derive an expression for the Darcy weisbach equation for turbulent boundary layer flow	07
Q.5	(a)	Explain flow over a flat plate for Turbulent flow.	03
	(b)	Explain thermal boundary layer growth over the hot surface.	04
	(c)	Draw an effect of viscosity on an airfoil in a moving fluid.	07
Q.6	(a)	Explain Reynolds analogy.	03
	(b)	Determine the wall shearing stress in a pipe of diameter 100mm which carries water. The velocities at the pipe centre and 30mm from the pipe centre are 2 m/s and 1.5 m/s respectively. The flow in pipe is given as Turbulent	04
	(c)	Derive Momentum equations for boundary layer by von karman	07
Q.7	(a)	Define critical Reynolds number.	03
	(b)	What is Prandtl mixing length theory?	04
	(c)	Derive governing equation for Turbulent flow.	07
0.8	(a)	Explain flow over a Cylinder for Laminar flow	03

FirstRanker.com

Firstranker's (b) o Kethin plate www.priseRanker!com velocity of 5m/s. The length of the plate is 0.6 m and width 0.5m.

> Calculate 1. The thickness of the B.L at the end of the Plate

2. Drag force on one side of the plate Take Density of air as 1.24 kg/m³ Kinematic viscosity 0.15 stokes

Derive velocity distribution for turbulent flow in smooth **07** pipe.

www.FirstRanker.com