www.FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-VII (NEW) EXAMINATION - WINTER 2020

Subject Code:2170501 Date:19/01/2021

Subject Name: Chemical Reaction Engineering - II

Time:10:30 AM TO 12:30 PM Total Marks: 56

Instructions:

- 1. Attempt any FOUR questions out of EIGHT questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

	٠.	right es to the right mutative run marias.	MARKS
Q.1	(a)	Draw the figures for various ways of studying the flow pattern in vessels.	03
	(b)	Explain: 1) Residence time distribution 2) Dirac delta function 3) Early mixing 4) Micro fluid	04
	(c)	Explain Step experiment to study the RTD in non- ideal reactor.	07
Q.2	(a)	Discuss closed vessel boundary condition.	03
	(b)	Derive the equation for E_{Θ} for single stirred tank reactor.	04
	(c)	A sample of tracer was injected as a pulse to a reaction vessel and the effluent concentration was measured as a function of time resulting in following data If the reaction vessel is used to carry out liquid decomposition reaction with rate $-r_A = kC_A$, $k = 0.1 \text{min}^{-1}$, Find the mean conversion.	07

T, min	0	1	2	3	4	5	6	7	8	9	10	12	14
C,	0	1	5	8	10	8	6	4	3	2.2	1.5	0.6	0
gm/ m ³									Š	0			

Q.3	(a)	Write about C pulse curve.	03
	(b)	What is Knudson equation? Explain the mechanism of solid catalyzed Gas phase reactions using LHHW model.	04
	(c)	Derive BET equation for surface area of catalysts.	07
Q.4	(a)	Discuss the effect of Henry's constant value on the solubility of gas in liquid.	03
	(b)	Write on 'Film conversion parameter'.	04
	(c)	Define: 1) Catalysts 2) Promoters 3) Inhibitors 4) Poisons 5) Accelerator 6) Coking 7) Sintering	07
Q.5	(a)	Give examples for various fluid fluid reactions.	03
	(b)	Draw diagram for various contacting pattern in two phase system	04
	(c)	Air with gaseous A bubbles through a tank containing aqueous Reaction occurs as follows:	07

www.FirstRanker.com

 $A (g \rightarrow l) + B (l) \rightarrow R (l) -r_A = kC_AC_B = l = 10 \text{ m}^3 \text{ (mol}^2 \cdot \text{hr)}$

For this system

 $k_A g \ a = 0.1 \text{ mol/hr. m}^3$. Pa

 $f_l = 0.01 \text{ m}^3 \text{ liquid/m}^3 \text{ reactor}$

 $\mathbf{k}_{Al} \mathbf{a} = 100 \text{ m}^3 \text{ liquid/m}^3 \text{ reactor. hr}$

 $H_A = 10^5 \text{ Pa. m}^3/\text{mol}$, very low solubility

 $D_{Al} = D_{Bl} = 10^{-6} \text{ m}^2/\text{hr}$

 $a = 100 \text{ m}^2/\text{m}^3$

For a point in the reactor where

 $p_A = 100 \text{ Pa and}$

 $C_B = 1 \text{ mol/m}^3$

For $M_H < 0.02$, we have infinitely slow reaction.

- (a) calculate the rate of reaction (mol/m³ hr)
- (b) Resistance offered by the main body of liquid

Q.6	(a)	Write in detail about Progressive conversion model.								
	(b)	Discuss the significance of Effectiveness factor for solid catalysed reaction.	04							
	(c)	Discuss in brief about slurry reaction kinetics.	07							
Q.7	(a)	Write about mean time and variance.								
	(b)	Write the significance of Thiele Modulus.	04							
	(c)	For chemical reaction controls, derive expression for relation for time required for unreacted core model for spherical particles of unchanging	07							
		size. Also find time required for complete conversion.								
Q.8	(a)	Give names for the different fluid particle contactors.	03							
	(b)	Discuss about various types of nonideality exists in non-ideal flow reactors.	04							
	(c)	Write in brief about catalysts deactivation.	07							
		MMM								

2