

GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-VII (NEW) EXAMINATION - WINTER 2020

Subject Code:2171306	Date:30/01/2021
Subject Code:21/1500	Date:50/01/2021

Subject Name: Wastewater Engineering

 $Q, m^3/h$

Time:10:30 AM TO 12:30 PM Total Marks: 47

Instructions:

- 1. Attempt any THREE questions from Q.1 to Q.6.
- 2. Q7 is compulsory.
- 3. Make suitable assumptions wherever necessary.
- 4. Figures to the right indicate full marks.

		1 I I I I I I I I I I I I I I I I I I I	MARKS
Q.1	(a)	Differentiate between domestic wastewater and industrial wastewater.	03
	(b)	Design an aerated grit chamber for the treatment of Municipal waste water. The average	04
		flow rate is 0.60 m ³ /s and the peaking factor is 2.25.	
	(c)	Design a bar rack (mechanically cleaned) for an average flow 40 MLD flow condition	07
		in incoming sewer is given by:	
		a. Diameter of sewer $= 1.53 \text{ m}$	
		b. Depth of flow at peak flow = 1 m	
		c. Velocity at peak design flow = 0.8m/s	

- d. Drop to screen chamber flow with respect to sewer invert is 0.08 e. Peaking Factor = 2
- Q.2 (a) Explain the concept of flocculation and the different types of flocculators.
 (b) Design an oil and grease trap to remove 180 mg/L of oil and grease from a flow of 43000 m³/day of wastewater.
 - For the flow rate data given in the table below, find out the volume of equalization tank. (c) Time $Q, m^3/h$ Time
- Q.3 (a) Enlist various methane precursors in anaerobic decomposition.
 (b) Explain volumetric organic loading, upflow velocity and gas collection system.
 03
 04

- (c) Explain the UASB process with its design criteria.
 07
 0.4 (a) What is Bio tower? Explain its working.
 03
 - (a) What is Bio tower? Explain its working.
 (b) Explain the purpose of following unit operations/processes in a wastewater treatment plant: (i) Grit Chamber, (ii) Attached growth biological process (iii) Secondary Sedimentation and (iv) Nitrification
 - (c) Design a rotating biological contactor to treat a flow of 50 MLD flow of primary treated wastewater having BOD₅ of 200 mg/L. Desired effluent BOD₅ is 30 mg/L.
- Q.5 (a) Explain the factors responsible for foaming in ASP.
 (b) Enlist and Explain the operational problems of chemical unit operations.
 (c) Explain the phases of SBR operational cycle with neat sketch.
- O.6 (a) Write a short note on rotating biological contactors.
 - (b) Differentiate between standard rate and high rate anaerobic digesters.

FIR	FirstRanker.com
	7655 TEP VILD Flow 6 domestic wast

conventional activated sludge plant at 0.3 F/M ratio to obtain 85% BOD removal efficiency, estimate the net surplus sludge produced per day. Assume suitable reaction constants	07
constants.	

Q.7 (a) Differentiate between extended aeration and tapered aeration.

05

Q.7 (a) Explain various methods of thickening of sludge.

05

Man Files Ranker Coll