www.FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-VII (NEW) EXAMINATION – WINTER 2020

Subject Code:2171708		t Code:2171708 Date:21/01/2021	Date:21/01/2021	
Subject Name:Digital Signal Processing Time:10:30 AM TO 12:30 PM Total Ma			56	
Inst	2.	ons: . Attempt any FOUR questions out of EIGHT questions Make suitable assumptions wherever necessary Figures to the right indicate full marks.		
Q.1	(a) (b)	Give classification of signals. For given discrete time system check whether the given system is a Static/Dynami, Linear/Nonlinear, Time Variant/Invariant, Causal/Noncausal, $Y(n) = x(2*n)$	03 04	
	(c)	What is aliasing effect and how it can be eliminated?	07	
Q.2	(a) (b) (c)	Draw & discuss typical block diagram of Digital Signal Processing Explain with suitable example recursive and non-recursive systems. Compute the convolution by graphical method between $x(n)=\{-1,2,\underline{3},2,1\}$ and $y(n)=\{2,\underline{1},-1,1\}$	03 04 07	
Q.3	(a) (b) (c)	ROC of Z-transform and enlist properties of ROC. Derive the Z transform for $X(n) = u(-n-2)$ 2. $X(n)=n^2u(n)$ Prove shifting and linearity properties of z transform.	03 04 07	
Q.4	(a) (b) (c)	Show relationship between Z transform and DFT. Determine the causal signal $x(n)$ having the z-transform $X(Z) = \frac{1}{(1-2z^{-1})(1-z^{-1})^2}$ Prove differentiation and convolution properties of z transform.	03 04 07	
Q.5	(a)	Compare DTFT with DFT.	03	
	(b) (c)	Calculate 4 point DFT of $X(n)=\{0,1,2,3\}$ List out the properties of DFT prove the symmetry property for DFT.	04 07	
Q.6	(a) (b)	Prove linearity property of DFT. Find IDFT of given sequence X(k)={12, -4+j4, -4, -4-j4}	03 04	
	(c)	Find circular convolution of the sequences $x(n)=\{1,2,3,4\}$ and $h(n)=\{2,1,2,1\}$.	07	
Q.7	(a) (b) (b)	Explain term 'radix' for FFT algorithm Explain Low pass and high pass filter. Explain Impulse Invariance Method for IIR filter design	03 04 07	
Q.8	(a) (b) (b)	Enlist difference between FIR and IIR Filter. Explain windowing Method for FIR filter design in brief. Explain Radix-2 Decimation In Time FFT algorithm.	03 04 07	

07