www.FirstRanker.com

,	www.	FirstF	Rank	er.c	om
Enrol	lment	No.			

Seat No.:

GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-VII (NEW) EXAMINATION - WINTER 2020

Subject Code:2171917 Date:02/02/2021

Subject Name:Steam and Gas Turbines

Time: 10:30 AM TO 12:30 PM **Total Marks: 56**

Instructions:

- 1. Attempt any FOUR questions out of EIGHT questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

	4.	Use of Steam table and Molliar diagram is permitted.	
			MARKS
Q.1	(a)	Describe different types of nozzle with neat sketch. State the function of nozzle.	03
	(b)	With help of S.F.E.E. prove that $C_2 = 44.72\sqrt{h_1 - h_2}$. Neglect initial velocity of steam. Where C_2 is outside velocity of steam from nozzle (h1 –h2) is heat drop in nozzle.	04
	(c)	What is critical pressure? Derive the expression for critical pressure ratio in flow through nozzles. Calculate its value for superheated steam.	07
Q.2	(a)	What is function of governing system of steam turbine? Compare throttle and Nozzle Governing.	03
	(b)	Derive an expression for exit velocity of steam in terms of enthalpy of fluid at inlet and at exit and the velocity of steam at inlet.	04
	(c)	Show that in a 50 % reaction turbine stage, the maximum efficiency is $(2cos^2\alpha)/(1+cos^2\alpha)$. where α is the nozzle angle.	07
Q.3	(a)	Explain with neat sketch any one method of attachment of blade to turbine rotor.	03
	(b)	Why compounding of impulse turbine is necessary? What are various methods of reducing rotor speed? Explain anyone method with neat diagram.	04
	(c)	The following particulars refer to a stage of a Parson's steam turbine comprising one ring of fixed blades and one ring of moving blades. Mean diameter of blade ring = 70 cm, Steam velocity at exit from blades = 160 m/s, R.P.M. = 3000, Blade outlet angle =200, steam flow through blades = 7 kg/s. Draw the velocity diagram and find the following: - (a) Blade inlet angle, (b) Tangential force on ring of moving blades, (c) Power developed in stage.	07
Q.4	(a) (b) (c)	<u>.</u>	03 04 07
0.5	(a)	State the difference between steam turking and gas turking	03

rstra	n (16) r	Find the efficiency of constant Ranker closed cycle gastwith FifstRanker	. <mark>94</mark> m
	(c)	In an open cycle regenerative gas turbine plant, the air enters the	07
		compressor at 1 bar, 32 0 C and leaves at 6.9 bar. The temperature at the end of combustion chamber is 816 0 C. the isentropic efficiencies	
		of compressor and turbine are respectively 0.84 and 0.85. combustion	
		efficiency is 90 % and the regenerator effectiveness is 60 %,	
		Determine Thermal efficiency of the plant.	
		•	
Q.6	(a)	State the different applications of Gas turbine.	03
	(b)	the gas turbine power plant.	04
	(c)	A simple gas turbine takes air at 1.01 bar and 15.5 °C and compresses	07
		it through a pressure ratio 5:1, the adiabatic efficiency of compression	
		being 85 %. The gases enter the turbine at a temperature 540 0 C and expand to 1.01 bar, the turbine efficiency being 80. Estimate the flow	
		of air and gases in kg/s, for a net power of 1500 kW, making the	
		following assumptions,	
		Fall of pressure through the combustion system is 0.07 bar, Cp for	
		both air and combustion gases =1.047 kJ/kgK, k = 1.4. Neglect	
		additional mass flow due to fuel.	
Q.7	(a)	Explain the working of turboprop engine with neat sketch. State its merits	03
	` ,	and demerits.	
	(b)		04
	(a)	power plant.	07
	(c)	Draw & Explain Can type combustor with swirl floe flame stabilizer.	U7
Q.8	(a)	Give classification of propulsive engine.	03
	(b)	Differentiate between (i) Turbojet engine and Turboprop engine	04
	()	(ii) Ramjet engine and Pulsejet engine	0=
	(c)	What is the principle of jet-propulsion? Explain Thrust, Thrust power, Propulsive power and Propulsive Efficiency.	07
		Propulsive power and Propulsive Efficiency.	

		0.0	
		.cil	
		What is the principle of jet-propulsion? Explain Thrust, Thrust power, Propulsive power and Propulsive Efficiency. ***********************************	
		4.	
		N.	