FirstRanker.com

www.FirstRanker.com

Enrolment.FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY	

		BE-SEMESTER-VII (NEW) EXAMINATION – WINTER 2020	
Subje	ect C	Code:2172011 Date:30/0	1/2021
Subje Time	ect N :10:3	ame:Production Optimization Techniques 30 AM TO 12:30 PM Total Ma	arks: 56
insti u	1. A 2. N 3. I	Attempt any FOUR questions out of EIGHT questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
			MARKS
Q.1	(a)	What do you understand by LPP?	03
	(b)	Explain various steps involved in V.A.M.	04
	(c)	Differentiate assignment problem with transportation problem.	07
Q.2	(a)	State and discuss the methods of solving an assignment problem.	03
C	(b)	Explain tick marking procedure in assignment problem.	04
	(c)	Explain application of linear programming.	07
03	(9)	Explain the given terms related to Queuing system:	03
Q	(u)	(1). Traffic intensity, (2). Length of system and (3). Queue.	00
	(b)	Explain kendal's notation for queuing system.	04
	(c)	Solve the following LPP by simplex method:	07
		Maximize $Z = 100x_1 + 50x_2 + 50x_3$	
		Subject to $4x_1 + 3x_2 + 2x_3 \le 1000$	
		$5x_1+6x_2+x_3 \ge 600$ $4x_1+2x_2+x_3 \le 600$ and $x_1, x_2, x_2 \ge 0$	
		$1x_1 + 2x_2 + x_3 = 000$ and $x_1, x_2, x_3 = 0$	
Q.4	(a)	Find the dual of the following LPP:	03
		Maximize $Z = x_1 - x_2 + 3x_3$	
		Subject to $x_1 + x_2 + x_3 \le 10$	
		$2X_1 - X_3 \leq 2$ $2x_1 - 2x_2 - 3x_2 \leq 6 \text{ and } x_1 + x_2 + x_3 \geq 0$	
	(b)	What are the conditions which leads the IBFS to degenerated	04
	(~)	problem?	•••
	(c)	At barber's shop, The customers arrive at the average interval of 6	07
		minutes, and the barber takes on an average 5 minutes for serving the	
		person. Calculate:	
		1). Counter utilization level; 2) Average no. of customers in the including as the service system	
		3). Average no. of customers in queue:	
		4). Average waiting time of the customers in the system;	
		5). Expected average waiting time in queue;	
		6). Probability that the barber is idle;	
		7).Probability of finding the barber is busy.	
0.5	(a)	Explain merge and burst event.	03
· ·	(b)	With the help of quantity cost curve, explain the significance of EOQ.	04
		What are the limitations of using the formula for an EOQ?	

1

www.FirstRanker.com

www.FirstRanker.com

03

04

04

03

(c) A firm is considering replacement of a machine, whose cost price is Rs. 12,200 and the scrape value Rs. 200. The running costs are found from experience to be as follows.

Year (n)	1	2	3	4	5	6	7	8
Maintenance	200	500	800	1200	1800	2500	3200	4000
cost f(t)								

Q.6 (a) Discuss in brief individual replacement versus group replacement.

- (b) Discuss different types of floats in network analysis
- (c) Explain the Johnson rule of sequencing for n jobs 3 machine problem. 07 Justify the rule with a proof.
- Q.7 (a) Describe the steps involved in process of decision making. What are pay off and regret functions? How can entries in regret table be derived from pay off table?
 - (b) Discuss the types of inventories with suitable example.
 - (c) The time estimates and precedence relationship of different activities 07 constituting a small construction project:

Activity	А	В	С	D	Е	F	G	Н	Ι
Predecessor	-	-	В	В	А	Α	F	C,E,G	F
Duration	3	8	6	5	13	4	2	6	2
(days)									

1). Draw the project network assuming all activities pending are ending at single end point.

2). Determine the project completion time.

3). What is critical path?

- Q.8 (a) What is the need of Decision tree analysis?
 - (b) Evaluate "PERT is used for recurring type of projects whereas CPM is 04 used for nonrecurring type".
 - (c) Find an optimal solution to an assignment problem with following 07 cost matrix:

	J_1	J_2	J_3	\mathbf{J}_4				
M_1	10	9	7	8				
M_2	5	8	7	7				
M ₃	5	4	6	5				
M_4	2	3	4	5				

www.FirstRanker.com