

GUJARAT TEVWINTION TO BE COME UNIVERSTIMS Ranker.com

BE- SEMESTER-VII (NEW) EXAMINATION - WINTER 2020

Subject Code:2173514 Date:25/01/2021

Subject Name:Environmental Reaction Engineering

Time:10:30 AM TO 12:30 PM Total Marks: 56

Instructions:

1.	Attempt any	FOUR o	questions or	it of EIGHT	questions.
1.	Attempt any	TOUN	questions of		questio

- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1	(a)	Explain Fick's first law of diffusion. Describe the contributions of liquid mixture to its overall total flux.	03		
	(b)	Discuss the correlation between Effective diffusivity and tortuosity	04		
	(c)	Correlate the time needed for complete conversion of a spherical particle considering that chemical reaction is rate governing step in shrinking core model.	07		
Q.2	(a)	Describe various properties of catalyst	03		
	(b)	Write short note on Mass transfer boundary layer thickness	04		
	(c)	Synthesize a rate law for the decomposition of Cumene to form benzene and propylene considering that surface reaction is rate limiting step.	07		
Q.3	(a)	Explain differences between ideal and non-ideal reactors			
	(b)	Discuss the steps involved in a Catalytic reaction.	04		
	(c)	Prove that for a first order reaction N-CSTRs connected in series will approximate to the behavior of PFR.	07		
Q.4	(a)	Define Thiele Modulus and Explain significance of this factor in catalytic reaction			
	(b)	How E curve can be determined though pulse input experiments?			
	(c)	The half-life period for a certain first order reaction is 2.5×10^3 sec. How long will it take for $1/4^{th}$ of reactant to be left behind?	07		
Q.5	(a)	Define holding time and space time for flow reactors.	03		
	(b)	In an isothermal batch reactor 70% of reactant A is converted in 15 minutes. Find the space time and space velocity to effect this conversion in a plug flow reactor assuming first order kinetics.			
	(c)	Discuss about reactions in series.	07		
Q.6	(a)	Discuss half-life method for analysis of rate data.	03		
	(b)	Give brief on variable volume reactor	04		
	(c)	Explain how different theories predict temperature dependency of reaction rate	07		
Q.7	(a)	Define order and molecularity of a reaction	03		
	(b)	Derive the integrated form of rate expression for Irreversible unimolecular type Second order reactions.	04		
	(c)	Differentiate between physical and chemical adsorption.			
Q.8	(a)	How overall order of a reaction can be estimated from Integral method?	03		
	(b)	If we are doubling the concentration of reactant, rate of reaction triples then Find out effect on the reaction order.	04		
	(c)	A polymerization reaction occurs at constant temperature in a homogeneous phase. For initial monomer concentrations of 0.3, 0.5 and 0.9 mol/l, 30 % of monomer reacts in 40 minutes. Find the reaction rate.	07		
