FirstRanker.com

www.FirstRanker.com

Enrower.FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

Sı	ıhiec	BE-SE t Code-21	MESTER 73612	–VII (NEV	V) EXAM	INATION	– WINTE	R 2020 ate•28/01/	2021		
Su Su Ti Ins	ibjec ime:1 structi 1 2	t Name:F 10:30 AM ions: 1. Attempt : 2. Make sui	undamer TO 12:3 any FOUR table assun	ntals of R 0 PM questions o nptions whe	eaction 1 ut of EIGH erever neces	Engineer T question ssary.	ing 3.	Cotal Mark	1021 1s: 56		
Q.1	(a)	3. Figures t Explain the	o the right	indicate ful e dependent	l marks. term of rate	equation fro	om Arrheniu	ıs law.	marks 03		
	(b)	Define and Explain, Rate and Molecularity of the reaction.									
	(c)	Consider a feed $C_{A0}=100$, $C_{B0}=200$, $C_{i0}=100$ to a steady flow reactor. The isothermal gas phase reaction is A+3B \rightarrow 6R If $C_A=40$ at the reactor exit what is C_B , X_A , and X_B there? Notations have their conventional meanings.									
Q.2	(a)	On doubling the concentration of reactant, the rate of reaction triples. Find the reaction order									
	(b)	Explain the different types of reaction with proper example of each type.									
	(c)	The aqueou Time, min	is reactions	$\begin{array}{c} A \rightarrow R+S \\ \hline 36 \end{array}$	proceeds as	follows 100	160	∞	07		
		CA, mol/lt With CA0 =	0.1823 0.1823 mo	0.1453	0.1216 , Cso = 55 n	0.1025 nol/lt. Find	0.0795 the rate equ	0.0494 ation for			
Q.3	(a)	Milk is pasteurized if it is heated to 63 ^o C for 30 min, but if it is heated to 74 ^o C it only needs 15 s for the same result. Find the activation energy of this sterilization process.									
	(b)	The reaction between nitric oxide and oxygen $2 \text{ NO} + \text{O}_2 \rightarrow 2 \text{ NO}_2$ follows the rate law $d [\text{O}_2]/dt = k [\text{NO}]^2 [\text{O}_2]$ Suggest a reaction mechanism which is consistent with this rate law.									
	(c)	Derive the integrated rate equation for zero order reaction for a variable volume system.									
Q.4	(a)	Liquid A decomposes by second order kinetics, and in a batch reactor 50% of A is converted in a 5 minute run. How much longer would it take to reach 75% conversion?									
	(b)	How will you compare the performance of single batch reactor with the flow reactor and mixed versus plug flow reactor for a first order reaction?									

(c) What are the different types of ideal reactors? Derive the performance 07 equation of steady state mixed flow reactor.

Q.5	stran (a)	ker's choice www.FirstRanker.com www.FirstRanker.com	com 03						
	(b)	Derive the performance equation of the plug flow reactor.	04						
	(c)	A homogenous gas reaction A 3R has a reported rate at 215 0 C	07						
		$-r_{\rm A} = 10^{-2} C_{\rm A}^{1/2} [\text{mol/lit sec}]$							
		Find the space time needed for 80% conversion of a 50% A-50% inert feed to a plug flow reactor operating at 215 0 C and 5 atm (C _{A0} =0.0625 mol/liter).							
Q.6	(a)	Explain differential method of analysis to find kinetics of any reaction of n th order.	03						
	(b)	Define autocatalytic reactions. Derive an expression to find its kinetics.	04						
	(c)	An irreversible bimolecular type reaction $A+B\rightarrow P$ is taking place in a constant volume batch reactor. Derive an expression for estimating conversion at any time 't'.	07						
Q.7	(a)	Derive an expression to find kinetics of 1 st order reaction taking place in a variable volume batch reactor.	03						
	(b)	How mixing of different composition of fluid is the key to the formation of intermediate for irreversible reactions in series? Discuss in detail the qualitative product distribution for series reaction.							
	(c)	Derive the C_{Rmax} for the reaction first order followed by zero-order reaction for $A^{k_1} \rightarrow R S$	07						
Q.8	(a)	Derive the performance equation of the Batch reactor.	03						
	(b)	Derive an equation of equal size mixed flow reactors connected in series for first order reaction	04						
	(c)	What do you understand by instantaneous fractional yield and overall fraction yield of a product? Give different contacting patterns for different concentration of reactant.	07						
