FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-V (NEW) EXAMINATION – WINTER 2020

Subject Code: 2150503

Time: 10:30 AM TO 12:30 PM

Date: 03/02/2021

Subject Name: Chemical Engineering Thermodynamics - II

Total Marks: 56

03

Instructions:

- 1. Attempt any FOUR questions out of EIGHT questions.
- 2. Make suitable assumptions wherever necessary.
- **3.** Figures to the right indicate full marks.
- Q.1 (a) Discuss ideal and non-ideal solutions.
 - (b) For binary azeotrope mixture deviating positively form ideality, draw vaporliquid equilibrium (VLE) diagrams.
 - (c) Mixture of n-pentane (1) and n-heptane (2) conform to ideal solution behavior. 07 The vapour pressures of pure components are adequately described by Antoine equations. Prepare P-x-y diagram at 70°C.

Use Antoine equation: $log_{10}P_i^{sat} = A_i - B_i /(t + C_i)$, where pressure P_i^{sat} is in torr and temperature t is in °C.

Component	А	В	С
n-pentane	6.8763	1075.78	233.2
n-heptane	6.8939	1264.37	216.64

- Q.2 (a) With neat diagram, describe the effect of increasing pressure on binary T-x₁-y₁ 03 vapour-liquid equilibrium (VLE) diagram.
 (b) Write a short note on flash vaporization. 04
 - (c) Derive the equation for criteria for phase equilibrium in terms of chemical 07 potential for a mixture of N components and π phases.
- Q.3 (a) Write a brief note on retrograde condensation.
 (b) The enthalpy at 300 K and 1 bar of a binary liquid mixture is represented by the following equation: H = 400 X₁ + 600 X₂ + X₁ X₂ (40X₁ + 20X₂), where H is in J/mol. Determine expressions for H
 ₁ and H
 ₂ as functions of X₁.
 - (c) Define fugacity and fugacity coefficient. Discuss any two methods to evaluate 07 fugacity coefficient.
- Q.4(a) Discuss liquid-liquid equilibrium (LLE) in brief.03(b) Explain T-x-y diagram for partial miscible system.04(c) Write a short note on equilibrium and stability.07
- Q.5 (a) Write Raoult's law and Henry's law explaining each term associated with them 03 with their applicability.
 - (b) The ammonia synthesis reaction written as: $0.5 \text{ N}_{2(g)} + 1.5 \text{ H}_{2(g)} \rightarrow \text{NH}_{3(g)}$ with 0.5 mol nitrogen and 1.5 mol hydrogen as the initial amounts of reactants and with the assumption that the equilibrium mixture is an ideal gas, show that: $\mathcal{E}_e = 1 - (1 + 1.299 \text{KP})^{-0.5}$
 - (c) For an ideal gas, the exact mathematical expressions can be developed for the offect of T and P on the reaction co-ordinate at equilibrium. For conciseness we let $\prod (y_i)^{v_i} = K$. Then we can write the mathematical relations:

FirstRanker.com ranker's choice $\left(\frac{\partial \varepsilon_e}{\partial T}\right)_p = \left(\frac{\partial K_y}{\partial T}\right)_p \frac{d\varepsilon}{dK_y} \text{ and } \left(\frac{\partial \varepsilon_e}{\partial T}\right)_T = \left(\frac{\partial K_y}{\partial T}\right)_T$

www.FirstRanker.com

07

 $d\varepsilon_e$

Using above equations, show that

$$i)\left(\frac{\partial \varepsilon_e}{\partial T}\right)_P = \frac{K_y}{RT^2} \frac{d\varepsilon}{dK_y} \Delta H^0 \quad \text{and} \quad ii)\left(\frac{\partial \varepsilon_e}{\partial T}\right)_T = \frac{K_y}{P} \frac{d\varepsilon_e}{dK_y} (-v)$$

- **Q.6** (a) Write a short note on bubble point equilibria and dew-point equilibria. 03
 - Explain Lewis-Randall Rule, and excess properties. 04 **(b)**
 - Derive from the first principles, $\Delta G^{o} = -RT \ln K$. (c)
- Discuss the area test for checking the thermodynamic consistency of 03 **Q.7 (a)** experimental VLE data.
 - **(b)** Define partial molar properties. Discuss any one method to evaluate partial molar 04 properties.
 - Water (1)/hydrazine (2) system forms an azeotrope containing 58.5 mol% 07 (c) hydrazine at 393 K and 101.3 kPa. Calculate the equilibrium vapor composition for a solution containing 20 mol% hydrazine. The relative volatility of water with reference to hydrazine is 1.6 and may be assume to remain constant in the temperature range involved. Vapor pressure of hydrazine at 393 K is 124.76 kPa.

Q.8 (a) Derive the Margules² equations from the expression
$$\frac{G^E}{x_1 x_2 RT} = A_{21} x_1 + A_{12} x_2$$
. **03**
(b) Write a short note on group contribution methods. **04**

Write a short note on group contribution methods. **(b)**

WWW.FirstP

A liquid mixture of cyclohexanone (1)/ phenol (2) for which $x_1 = 0.6$ is in 07 (c) equilibrium with its vapour at 417.15 K. Determine the equilibrium pressure P and vapour composition y₁ from the following information:

 $\ln \gamma_1 = Ax_2^2$ and $\ln \gamma_2 = Ax_1^2$

At 417.15 K, $p_1^{sat} = 75.20$ and $p_2^{sat} = 31.66$ kPa The system forms an azeotrope at 417.15 K for which $x_1^{az} = y_1^{az} = 0.294$.
