

GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-IV (NEW) EXAMINATION - WINTER 2020

Subject Code:2140606 Date:09/02/2021

Subject Name: Numerical and Statistical Methods for Civil Engineering Time: 02:30 PM TO 04:30 PM **Total Marks:56**

Instructions:

- 1. Attempt any FOUR questions out of EIGHT questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

MARKS

(a) Prove that $E^{\frac{1}{2}} = \mu + \frac{1}{2}\delta$. 0.1

03

(b) Fit a polynomial of degree three which takes the following values :

04

X:	3	4	5	6
Y:	6	24	60	120

(c) Use the Runge-Kutta method of fourth order to solve

07

$$\frac{dy}{dx} = 1 + y^2$$

Subject to y(0) = 0, find y(0.2) and y(0.4).

0.2 Evaluate $\int_{0}^{1} 2e^{x} dx$ with n=10 using the trapezoidal rule. 03

(b) If 20 % of the bolts produced by a machine are defective, determine the Probability that out of 4 bolts chosen, at most 2 bolts will be defective.

04

(c) Solve the following system of linear equations by Gauss Seidel method 6x + y + z = 105

07

$$4x + 8y + 3z = 155$$

$$5x + 4y - 10z = 65$$

4x+8y+3z=155 5x+4y-10z=65(a) Find a root of the equation $x^3-4x-9=0$ using the Bisection method in **Q.3** four stages.

03

(b) Determine the root of $xe^x - 2 = 0$ by method of false position.

04

Find a real root of the equation $x = e^{-x}$, using the Newton-Raphson method.

07

Q.4 (a) Write sample space of random experiment of tossing three coins together and obtain the probability of the event that one head and two tails obtained.

03 04

(b) Evaluate $\int_{0}^{x} \frac{1}{1+x} dx$ with n=6 by using Simpson's 3/8 rule, and hence

calculate log 2.

(c) Fit a second degree parabola $y = a + bx^2$ to the following data :

07

	<u> </u>				
x:	1	2	3	4	5
y:	1.8	5.1	8.9	14.1	19.8

FirstRanker.com

Q.5 tr (a) ke Use Lagrange's intermolation remainder. Com y(4) from the Following Ker. Com

tuoic.					
x:	-1	0	2	3	
y:	-8	3	1	2	

(b) Using Newton's divided difference interpolation, compute the value of f(6) from the table given below:

X	1	2	7	8
f(x)	1	5	5	4

(c) Use the Gauss Elimination method to solve the following equations :

$$x+4y-z=-5$$
$$x+y-6z=-12$$
$$3x-y-z=4$$

Q.6 (a) Using Taylor's series method, find the value of y(0.1), given $\frac{dy}{dx} = x^2 + y^2$ and y(0) = 1, correct to four decimal places.

(b) Using Stirling's formula, find y(25) from the following table:

	,	• • /		
x:	20	24	28	32
y:	0.01427	0.01581	0.01772	0.01996

(c) Find the dominant eigen values of $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ by power method and hence find the other eigen value also.

Q.7 (a) Use Euler's method, find y(0.2) given $\frac{dy}{dx} = y - \frac{2x}{y}$, y(0) = 1 with h = 0.1.

 X:
 1
 2
 3
 4
 5
 6

 Y:
 6
 4
 3
 5
 4
 2

(c) Fit the curve $y = ax^b$ to the following data:

,	The the curve $y = ax$ to the following data.						
	x:	61	26	7	2.6		
	y:	350	400	500	600		
	OR						

OR

Q.8 (a) Define Discrete Random Variable and Continuous Random Variable.

 X:
 1
 2
 3
 4
 5
 6
 7

 Y:
 6
 8
 11
 9
 12
 10
 14

(c) From the following results, obtain the two regression equations and estimate the yield when rainfall is 29 cm and the rainfall, when the yield is 600Kg:

	Yield in Kg	Rainfall in cm
Mean	508.4	26.7
S.D.	36.8	4.6

The coefficient of correlation between yield and rainfall is 0.52.

04

07

04

04

07

03

04