

www.FirstRanker.com

www.FirstRanker.com

Seat No.: _____

Enrolment No.____

GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-V (NEW) EXAMINATION - WINTER 2020

Subject Code:2150608 Date:20/01/2021

Subject Name:Structural Analysis-II

Time: 10:30 AM TO 12:30 PM **Total Marks: 56**

Instructions:

- 1. Attempt any FOUR questions out of EIGHT questions.
- 2. Make suitable assumptions wherever necessary.

	3.]	rigures to the right indicate full marks.	
Q.1	(a) (b)	Explain the term: Distribution factor, Carry over factor, Carry over moment. State and explain Castigliano's first theorem.	03 04
	(c)	Using Castigliano's second theorem, find the reaction at point B of the propped cantilever beam as shown in the Fig. 1.	07
Q.2	(a)	Write down equation for fixed end moment for the fixed beam in the case of sinking of support.	03
	(b)	Write only slope deflection equations for the frame shown in Fig. 1.	04
	(c)	Analyze and draw the SFD & BMD for the beam shown in Fig. 2 by slope deflection method.	07
Q.3	(a)	Find out distribution factor for the frame shown in Fig. 2.	03
	(b)	Find out distribution factor for the frame shown in Fig. 3.	04
	(c)	Analyze and draw the SFD & BMD for the beam shown in Fig. 2 by Moment	07
		distribution method.	
Q.4	(a)	Define Stiffness and Flexibility.	03
	(b)	Derive the Stiffness Matrix [S] for the beam as shown in Fig. 2.	04
	(c)	Analyze the frame shown in Fig. 3 by Moment distribution method	07
Q.5	(a)	Define sway. What are the causes for sway in portal frames?	03
	(b)	State and explain Muller Breslau principle for influence line.	04
	(c)	Draw the ILD for reaction V_a , V_b and V_c for the two span continuous beam as shown in Fig 4. Compute ordinates at 2 m interval.	07
Q.6	(a)	Write properties of stiffness matrix.	03
	(b)	A simply supported beam AB has span 8 m. Draw ILD for R _a , R _b ,V _x , M _x for	04
		section X at 3 m from left hand support.	
	(c)	Analyse the beam shown in Fig.5 using stiffness matrix method.	07
Q.7	(a)	State Castiglione's first and second theorem with its usefulness.	03
	(b)	Derive the stiffness matrix [S] only for the beam shown in Fig. 6.	04
	(c)	Analyse the frame as shown in Fig. 7 using stiffness matrix method.	07
Q.8	(a)	Enlist the difference between stiffness matrix method and flexibility matrix	03

method.

www.FirstRanker.com

www.FirstRanker.com

- (b) Formulate the flexibility matrix for the beam shown in **Fig. 6.**
- 04 07
- (c) Find the matrices: $[D_Q]$, $[D_{QL}]$, [F] and [Q] with usual notations for the beam shown in **Fig. 8.** Use Flexibility method assuming moment (M_a) and moment (M_b) as redundant.
