

GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-V (NEW) EXAMINATION – WINTER 2020

Subject Code:2150703 Date:22/01/2		2021	
Time	Subject Name: Analysis and Design of Algorithms Time: 10:30 AM TO 12:30 PM Total Marks Instructions:		56
mstru	1. 2.	Attempt any FOUR questions out of EIGHT questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	(a)	Define O, Ω , θ notations with example.	03
	(b)	Sort following functions in increasing order of running time for large values of n: n, log2n, 2 ⁿ , n ² logn, n ³	04
	(c)		03
	(-)	(ii) Solve the following using Master's theorem:	
		A. $T(n) = 2T(n/4) + 1$	04
		B. $T(n) = 3T(n/3) + n$	
Q.2	(a)	Explain Master Theorem for all three cases.	03
	(b)	· · ·	04
		is $100n^2$ is runs faster than an algorithm whose running time is 2^n on the same	
		machine?	
	(a)	(ii) What is meaning of T (n) = $O(1)$. Explain with suitable example.	07
	(c)	Given the four matrices P_{5x4} , Q_{4x6} , R_{6x2} , T_{2x7} . Find the optimal sequence for the computation of multiplication operation.	U/
Q.3	(a)	Mention the parameters for finding suitable algorithm among many candidate algorithms. Justify parameter with suitable example.	03
	(b)		04
	(~)	limited, Iterative or recursive? Justify your answer.	
		ii. An asymptotically fast algorithm running on Slow computer is better	
		than asymptotically slow algorithm is running on fast computer for	
		larger input size. (True/False) Justify your answer with supporting arguments.	
	(c)		07
	(-)	case scenarios.	
Q.4	(a)	Merge sort algorithm have similar time complexity in best, average and worst	03
		case. (True/False). Justify your answer.	
	(b)	Differentiate between greedy approach and Dynamic approach	04
	(c)	How the selection of pivot affects the performance of Quick Sort? Discuss all possible scenarios.	07
Q.5	(a)	How to solve knapsack problem using dynamic programming?	03

(b) Given two strings from 26 symbols set, X="BITTER", Y = "BUTTER" obtain 04

the longest common subsequence.

rstra (c) er Compare and contrast Branker suitable example.

- **Q.6** (a) Generate Huffman Code for symbols with probability as 03 $A_1(0.5), A_2(0.25), A_3(0.125), A_4(0.0625), A_5(0.0625)$.
 - **(b)** Find the all pair shortest path using Floyd-Warshall Algorithm for directed **04** graph shown below:

- (c) How to solve 0-1 knapsack problem using dynamic programming? Consider **07** Items having Value(Rs.)={60,100,120} , Weight(KG)={10,20,30} respectively, Weight Capacity =50 KG.
- Q.7 (a) Define terms: Articulation Point, Isolated, Adjacency 03
 - **(b)** Solve the following Task Assignment problem for minimization using **0**4 following cost matrix.(Cost matrix represents cost of Task T performed by Person P.

(c) Find minimum spanning tree for the following undirected weighted graph 07 using Kruskal's algorithm.

- **Q.8** (a) What is the significance of Hashing in Rabin-Karp Pattern matching **03** algorithm?
 - (b) Draw the Finite automata which accepts String over 26 letter alphabet of **04** {A...Z} : **ACACAGA**
 - (c) Explain the concept of P, NP and NP-complete problem 07
