

GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-V (NEW) EXAMINATION - WINTER 2020

Subject	Code:2150/03	Date:22/01/2021
Subject	Name: Analysis and Design of Algorithms	
Time:10	0:30 AM TO 12:30 PM	Total Marks: 56
Instructio	ns:	
1.	Attempt any FOUR questions out of EIGHT questions.	
2.	Make suitable assumptions wherever necessary.	
3.	Figures to the right indicate full marks.	

Q.1	(a)	Define O, Ω , θ notations with example.	03
	(b)	Sort following functions in increasing order of running time for large values	04
		of n: n, log2n, 2n, n2logn, n3	
	(c)	(i) What are the different parameters to analyze any algorithm?	03
		(ii) Solve the following using Master's theorem:	
		A. $T(n) = 2T(n/4) + 1$	04
		B. $T(n) = 3T(n/3) + n$	
0.2	(a)	Evaluin Master Theorem for all three cases	0.2

		A. 1(II) - 21(II/4) + 1	U4
		B. $T(n) = 3T(n/3) + n$	
2.2	(a)	Explain Master Theorem for all three cases.	03
	(b)	(i) What is the smallest value of n such that an algorithm whose running time	04
		is $100n^2$ is runs faster than an algorithm whose running time is 2^n on the same	
		machine?	
		(ii) What is meaning of T (n) =O(1). Explain with suitable example.	
	(c)	Given the four matrices P5x4, Q4x6, R6x2, T2x7. Find the optimal sequence for	07
		the computation of multiplication operation.	
			-

Q.3	(a)	Mention the parameters for finding suitable algorithm among many candidate	0.
		algorithms. Justify parameter with suitable example.	
	(b)	i. Which version of algorithm is preferred when memory resources are	0.
		limited, Iterative or recursive? Justify your answer.	
		ii. An asymptotically fast algorithm running on Slow computer is better	
		than asymptotically slow algorithm is running on fast computer for	
		larger input size. (True/False) Justify your answer with supporting	
		arguments.	
	(c)	Analyze Selection sort and Insertion Sort algorithms in best case and worst	0.

(c)	Analyze Selection sort and Insertion Sort algorithms in best case and worst	07								
	case scenarios.									

Q.4	(a)	Merge sort algorithm have similar time complexity in best, average and worst case. (True/False). Justify your answer.	03
	(b)	Differentiate between greedy approach and Dynamic approach	04

			, ,,			* *		
(c)	How the selection of	of pivot	affect	s the perfo	rmance	of Quick	Sort? Discuss all	07
	possible scenarios.							

Q.5	(a)	How to solve knapsack problem using dynamic programming?	03
	(b)	Given two strings from 26 symbols set, X="BITTER", Y = "BUTTER" obtain	04
		the longest common subsequence.	

Firstranker's choice and contrast Branker shared Backtracking Methods Reitle off suitable example.

- Q.6 (a) Generate Huffman Code for symbols with probability as 03 $A_1(0.5), A_2(0.25), A_3(0.125), A_4(0.0625), A_5(0.0625)$.
 - (b) Find the all pair shortest path using Floyd-Warshall Algorithm for directed 04 graph shown below:

- (c) How to solve 0-1 knapsack problem using dynamic programming? Consider 07 Items having Value(Rs.)={60,100,120} , Weight(KG)={10,20,30} respectively, Weight Capacity =50 KG.
- Q.7 (a) Define terms: Articulation Point, Isolated, Adjacency 03
 - (b) Solve the following Task Assignment problem for minimization using 04 following cost matrix. (Cost matrix represents cost of Task T performed by Person P.

(c) Find minimum spanning tree for the following undirected weighted graph 07 using Kruskal's algorithm.

- Q.8 (a) What is the significance of Hashing in Rabin-Karp Pattern matching 03 algorithm?
 - (b) Draw the Finite automata which accepts String over 26 letter alphabet of 04 {A...Z} : ACACAGA
 - (c) Explain the concept of P, NP and NP-complete problem 07
