

www.FirstRanker.com

Enrolment.FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-V (NEW) EXAMINATION - WINTER 2020Subject Code:2151002Date:22/01/2021Subject Name:Engineering ElectromagneticsTotal Marks: 50Time:10:30 AM TO 12:30 PMTotal Marks: 50				
0.1			MARKS	
Q.1	(a)	Transform the following vectors to spherical coordinates at the points given: $Y = 10 a_y$. At point Q ($\rho = 5$, $\varphi = 30^\circ z = 4$)	03	
	(b)	A field is given as $\mathbf{G} = [25 / (x^2 + y^2)](x \mathbf{a}_x + y \mathbf{a}_y)$. Find a unit vector in the direction of \mathbf{G} at $P(3, 4, -2)$. Also find the angle between \mathbf{G} and \mathbf{a}_x at P . State the Biot Savart Law	04	
	(c)	Express biot savart law in terms of differential current element dL, surface current density K and current density J.	07	
Q.2	(a) (b)	Stat and explain in brief : The divergence theorem Determine an expression for the volume charge density associated with each D field: D = $\sin \theta \sin \varphi \mathbf{a}_r + \cos \theta \sin \varphi \mathbf{a}_{\theta} + \cos \varphi \mathbf{a}_{\varphi}$.	03 04	
	(c)	Explain the term: Electric Flux Density. Determine an equation for the electric fields due to volume charge distribution.	07	
Q.3	(a)	Define potential and potential difference	03	
	(b)	State conductor properties and its boundary condition.	04	
	(c)	Define capacitance. State and explain the problem of the parallel plate capacitor. Fine the expression for capacitance for parallel plate capacitor.	07	
Q.4	(a) (b)	Define current and current density An electric field is expressed in rectangular coordinates by $\mathbf{E} = 6 x^2 \mathbf{a}_x + 6 y \mathbf{a}_y + 4 \mathbf{a}_z$ V/m. Find: (a) V_{MN} if points M and N are specified by M (2, 6, -1) and N (-3, -3, 2); (b) VM if $V = 0$ at Q(4, -2, -35)	03 04	
	(c)	State the Nature of Dielectric Materials and Boundary Conditions for Perfect Dielectric Materials.	07	
0.5	(a)	State the magnetic boundary conditions.	03	
¥10	(b)	The point charge $Q = 18$ nC has a velocity of 5×10^6 m/s in the direction a $_v = 0.60$ a $_x + 0.75$ a $_y + 0.30$ a $_z$. Calculate the magnitude of the force exerted on the charge by the field: B = -3 a $_x + 4$ a $_y + 6$ a $_z$ mT	04	
	(c)	Define CURL. Derive the expression of curl of magnetic field intensity	07	

(c) Define CURL. Derive the expression of curl of magnetic field intensity 07 in rectangular co-ordinate.

rstra	nker	's choice www.FirstRanker.com www.FirstRanker	com
Q.6	(a)	Find the magnetization M in a magnetic material where: $\mu = 1.8 \times 10^{-5}$ H/m and $H = 120$ A/m	03
	(b)	Define force and Torque on a close circuit.	04
	(c)	State the ampere's circuital law. Derive the expression for magnetic field intensity at any point for co-axial cable which carries the uniform distribution of current.	07
Q.7	(a)	Explain : Wave Polarization and Standing Wave Ratio	03
	(b)	State and explain Lorentz force equation.	04
	(c)	Derive MAXWELL's equation in point form.	07
Q.8	(a)	State and explain faraday's law.	03
	(b)	Explain : The Retarded Potentials	04
	(c)	Evaluate a Poisson's and Laplace's Equations	07

www.firstRanker.com