

www.FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-V (NEW) EXAMINATION - WINTER 2020

Subject Code:3150102	Date:29/01/2021
----------------------	-----------------

Subject Name: Fundamentals of Turbomachines

Time:10:30 AM TO 12:30 PM	Total Marks: 56
---------------------------	-----------------

Instructions:

- 1. Attempt any FOUR questions out of EIGHT questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

			MARKS
Q.1	(a)	What's is mean by turbo machine	03
	(b)	Discuss choking in turbo machines	04
	(c)	Derive Euler's energy equation for turbo machine	07
Q.2	(a)	Define Degree of reaction, flow coefficient and loading coefficient	03
	(b)	Explain over expansion and under expansion	04
	(c)	Draw velocity triangle for an axial turbine stage	07
Q.3	(a)	What do you understand by The bypass ratio of a turbofan engine	03
	(b)	Draw the pressure and velocity variation along the length of axial turbine	04
	(c)	Explain Surge and stall in compressor. Also draw surge line by drawing neat sketch	07
Q.4	(a)	Why diameter of compressor is decreasing along the length	03
Ų.Ŧ	(b)	List the losses in centrifugal compressor	03
	(c)	A single stage gas turbine operates at its design condition with an axial absolute flow at entry and exit from the stage. The absolute flow angle at the nozzle exit is 700. At stage entry, the total pressure and temperature are 311 kPa and 850oC respectively. The exhaust static pressure is 100 kPa, the total to static efficiency is 0.87 and mean blade speed is 500 m/s. Assuming constant axial velocity through the stage, determine (a) the specific work done (b) the Mach number leaving the nozzle (c) the axial velocity (d) total to total efficiency (e) stage	07
		reaction (c) stage	
Q.5	(a)	Explain difference in multi spool and multi stage	03
	(b)	Why centrifugal compressors have volute diffuser?	04
	(c)	Draw velocity triangles for forward, backward and radial tipped centrifugal compressor.	07
Q.6	(a)	Difference between rotor blade and stator blade.	03
	(b)	Why multistage of centrifugal compressor is difficult	04
	(c)	Air at a temperature of 290K enters a ten stage axial flow compressor at the rate of 3kg/s. the pressure ratio is 6.5 and the efficiency is 90%, the compression process being adiabatic, the compressor has symmetrical blades. The axial velocity of 110m/s is uniform across the stage and the mean blade speed of each stage is 180m/s. determine the direction of the air at entry	07

FirstRanker.com Firstranker's choined exit from the retornal the stator blades and alterstranker.com power given to the ai

Q.7	(a)	Enlist the cooling technique used for gas turbine blades	03
	(b)	Write a short note on stall propagation in a compressor blade	04
		row	
	(c)	Draw h-s diagram for an axial turbine stage.	07
(b	(a)	Enlist classification of turbo machines.	03
	(b)	Write difference between fan, blower and compressor	04
	(c)	Draw stodola's model of flow with slip and Write an equation of	07
		Balie's formula	

www.kirstRanker.com