U FI	rstre	www.FirstRanker.com	www.l	FirstRanker.com
Seat No.:).:	Enrolment No)
		GUJARAT TECHNOLOGICAL	UNIVERS	ITY
		BE- SEMESTER-V (NEW) EXAMINATIO	N – WINTER	R 2020
Sı	ıbje	ct Code:3150405	Dat	e:29/01/2021
S	ıbje	ct Name:Chemical Engineering Fundament	als II	
T	ime:	10:30 AM TO 12:30 PM	To	tal Marks: 56
In	struc	tions:		
		1. Attempt any FOUR questions out of EIGHT question	ons.	
		2. Make suitable assumptions wherever necessary. 3 Figures to the right indicate full marks		
		5. Figures to the right mulcate run marks.		
Q.1	(a)	Define Molecular and eddy diffusion with examples.		
	(b)	Explain criteria of solvent selection for gas absorption	n.	
	(c)	Differentiate between Direct and Indirect mass transf	fer operations.	
Q.2	(n)	Define the following terms:		
	(a)	i) order of reaction (ii) elementary and non-elementa	ry reactions	
	(b)	Explain temperature and pressure dependency of diff	usivity of gase	s and liquids
	(c)	For a given liquid flow rate give step wise procedure	to calculate m	inimum liquid to
		gas ratio for absorbers.		_
Q.3	(a)	Define rate of reactions in different useful ways		
	(\mathbf{a})	Derive performance equation for an ideal batch react	or	
	(c)	Derive equation for material balance for single stage	countercurrent	leaching.
Q.4	(a)	Define various k-type mass transfer coefficients alon	g with formula	and units
	(b)	Define and give physical significance of Reynolds N	o. and Prandlt	No.
	(c)	State different theories explaining the meaning of ma	ss transfer coe	fficients. Explain
		any one in detail.		
05	(a)	Discuss Molecularity Mention the general formulae	for the unit of	rate constant k
Q.J	(a) (b)	Derive the performance equation of recycle plug flow	v reactors.	fate constant K.
	(c)	The rate constant of a reaction is measured at dif	ferent tempera	tures is reported
		below. Calculate the activation energy for this reaction	on.	1
		Temperature, K 273 293	303	313
		Rate constant, k, sec ⁻¹ 2.46×10^5 47.5×10^5	576 x 10 ⁵	5480×10^5
		N.		
Q.6	(a)	Explain concept of effective diffusivity.		
	(D)	Explain the concept of equilibrium in case of interphase mass transfer.		
	(\mathbf{U})	Desende two resistance meory of interphase mass		1.
Q.7	(a)	Explain space time, space velocity and holding time.		
	(b)	Liquid A decomposes by first order kinetics, and i	n a batch reac	tor 50% of A is
		converted in 5 minutes. How long it will take to reac	h 75% convers	ion?
	(c)	Write a short note on differential method and integr	al method of a	nalysis of kinetic
		uata.		
Q.8	(a)	Explain Fick's law in diffusion through solids		
Q.0				
Q.0	(b)	Explain industrial applications of liquid extraction.		