www.FirstRanker.com

www.FirstRanker.com

Code No. 8040

FACULTY OF PHARMACY

B. Pharmacy 2/4 I - Semester (Main) Examination, October / November 2014

Subject: Pharmaceutical Analysis – I (Chemical Analysis)

Time: 3 Hours Max. Marks: 70

Note: Answer all questions. All questions carry equal marks.

1	(a)	(i)	Define the following terms:	(4x2)
		(ii)	(A) Significant figure (B) Accuracy (C) Equivalence point (D) Indicator What are primary standard and secondary standard? Write ideal properties of a primary standard.	(6)
			OR	` ,
	(b)	(ii)	Write a note on rejection of doubtful values. How to calibrate a burette?	(6) (4)
		(iii)	Calculate the weight of NaoH in 1N solution, required to neutralize 25ml of 1N H ₂ SO ₄ .	(4)
2	(a)	(i) (ii)	Write notes on different theories of Acids and Bases. Write short notes on : (A) Buffers (B) Neutralization indicators	(8) (2x3)
			OR	
	(b)	(i)	How to prepare and standardize 0.1 N NaoH solution?	(4)
		(ii)	Discuss Law of mass action and its significance.	(6)
		(iii)	Solubility of AgCl is 0.0015 g/dm ³ . Calculate the solubility product.	(4)
3	(a)	(i)	Write a note on redox indicators.	(5)
	` ,	(ii)	Write the principle and applications of gravimetric analysis.	(5)
		(iii)	How to prepare and standardize 0.1N KMnO ₄ solution? OR	(4)
	(b)		Write the methods of balancing of oxidation reduction reactions with examples. Write notes on co-precipitation and coagulation methods used in gravimetric	(6)
	P	M	analysis.	(8)
4	(a)	(i) (ii)	Write the principle involved in non-aqueous titrations and mention its applications Explain the masking and demasking agents with suitable examples.	. (6) (8)
	(h)	/i\	Write the principle precedure and apparatus used in the assay of evygen	(6)
	(b)	(i) (ii)	Write the principle, procedure and apparatus used in the assay of oxygen. How to prepare and standardize 0.1 N HClO ₄ ?	(6) (4)
		(iii)	Write a note on lodometry.	(4)
5	(a)	(i)	How many moles of glucose are present in 540 gm of glucose.	(4)
O	(α)	` '	Describe mole concept and avogadro's number.	(6)
			0.202 gm of a carbon compound on combustion gave 0.361 gm of CO ₂ and	(-)
			0.147gm of water. Calculate the empirical formula of the compound.	(4)
OR (b) (i) Colordated the parameters are position of alamanta in No. CO. (4)				
	(b)		Calculated the percentage composition of elements in Na ₂ SO ₄ . Write briefly about theoretical yield and percentage yield with suitable examples.	(4)
		` '	Write the mass balance equation for the following:	(4) (6)
		(111)	(A) $NH_4OH + H_2SO_4 \longrightarrow (NH_4)_2 SO_4 + H_2O$	(0)
			(B) $CaCl_2 + NaNO_3 \longrightarrow Ca(NO_3)_2 + NaCl$	
			(C) $C_6H_{12}O_6 + H_2SO_4 \longrightarrow C_2H_5OH + CO_2$	
