Total No. of Questions : 09

B.Tech. (EE) PT (Sem.-1)
 ENGINEERING MATH-III
 Subject Code : BTAM-301
 M.Code : 70970

Time : 3 Hrs.

Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION - B \& C. have FOUR questions each.
3. Attempt ANY FIVE questions from SECTION B \& C carrying EIGHT marks each.
4. Select atleast TWO questions from SECTION - B \& C.

SECTION-A

1. Solve the following :
a) Find half range cosine series for x in $(0, \pi)$.
b) State Dirichlet's condition for expansion of a function in terms of Fourier Series.
c) If $\mathrm{L}(\mathrm{f}(\mathrm{t}))=\mathrm{F}(\mathrm{s})$ then prove that $\mathrm{L}(\mathrm{f}(\mathrm{at})=\mathrm{F}(\mathrm{s} / \mathrm{a}) / \mathrm{a}$.
d) Find laplace transform of $e^{-2 t} \sin ^{2} t$.
e) Find the solution of $\frac{d^{2} y}{d x^{2}}-\frac{1}{x} \frac{d y}{d x}+\left(3-\frac{1}{4 x^{2}}\right) y=0$ in terms of Bessel's function
f) Define regular singular and irregular point of a second order Linear differential equation.
g) Form the Partial Differential Equation corresponding to $z=y^{2}+2 f\left(\frac{1}{x}+\log y\right)$
h) Solve the partial differential equation $(z-y) p+(x-z) q=y-x$, where $p=\frac{\partial z}{\partial x}, q=\frac{\partial z}{\partial y}$
i) Is the function $u=2 x y+3 x y^{2}-2 y^{3}$ harmonic? Given reason.
j) Find the poles and residue at the poles of $\frac{z}{\cos z}$.

SECTION-B

2. Find Fourier series for $f(x)=|\sin x|,-\pi \leq x \leq \pi$.
3. State and prove second shifting theorem and hence find inverse Laplace transform of $\left(\frac{e^{-2 s} s}{\left(s^{2}+s+1\right)}\right)$
4. Solve the homogeneous partial differential equation

$$
\frac{\partial^{2} z}{\partial x^{2}}-4 \frac{\partial^{2} z}{\partial x \partial y}+4 \frac{\partial^{2} z}{\partial y^{2}}=4 \sin (2 x+y)
$$

5. Prove that $J_{1 / 2}(x)=\sqrt{\frac{2}{\pi x}}\left(\frac{\sin x}{x}-\cos x\right)$

SECTION-C

6. If $f(z)=u+i v$ is an analytic function. Find $f(z)$ if $u+v=\frac{x}{x^{2}+y^{2}}, f(1)=1$
7. Find series solution of the differential equation

$$
9 x(1-x) \frac{d^{2} y}{d x^{2}}+12 \frac{d y}{d x}+4 y=0 .
$$

8. A tightly stretched elastic string with fixed end points $x=0$ and $x=l$ is initially in a position given by $y=y_{0} \sin ^{3}\left(\frac{\pi x}{l}\right)$. If it is released from rest from this position find the displacement $y(x, t)$.
9. a) Using Residue theorem, evaluate the integral

$$
\int_{C} \frac{(z+3)}{(z+1)^{2}(z-2)} \text {, where } \mathrm{C} \text { is the circle }|\mathrm{z}|=3
$$

b) Prove that $w=\frac{z}{i-z}$ maps the upper half of the z-plane into the upper half of w-plane.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

