

www.FirstRanker.com

www.FirstRanker.com

Roll No. Total No. of Pages : 03

Total No. of Questions: 09

B.Tech.(ECE / Electronics & Computer Engg. / ETE) (2011 Onwards)
B.Tech. (Electronics Engg.) (2012 Onwards) (Sem.-3)

NETWORK ANALYSIS AND SYNTHESIS

Subject Code: BTEC-303 M.Code: 57585

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

Ql. Answer briefly:

- State various properties of LC networks.
- b. Define h-parameters and draw its equivalent h-model.

c. Find
$$f(\infty)$$
 if $F_{(s)} = \frac{5s+3}{s(s+1)}$

- d. A series RL circuit has R = 10KΩ, L = 10mH and C = 1μF. Find the Transfer function of the circuit.
- e. Check the positive realness of $F_{(s)} = \frac{s^2 + 50s + 14}{s + 12}$
- Differentiate between Network Analysis and Network Synthesis. Name the methods to solve them.
- g. Using nodal analysis in Fig. 1 find the value of current in 20 Ω resistor.

1 | M - 57585 (S2)-414

- h. If two circuits X and Y are to be connected in cascade. Give the two port parameters of the combination with diagram cascade combination.
- i. Find response of $H_{(s)} \frac{s^2 + 4s + 3}{s^2 + 6s + 8}$ for step input.
- Find condition for a 2-port network using Z and Y-Parameters to be reciprocal.

SECTION-B

Q.2 Find the value of Z_L in Fig. 2 so that maximum power is transferred to it. Also find the value of maximum power transferred.

Fig. 2

Q.3 Find Y-parameters of the network of Fig. 3.

Fig. 3

Q.4 Steady state is achieved in the given circuit of Fig. 4 with switch, S open. Find the value of I(t) for t > 0,if switch S is closed at t = 0.

Fig. 4

2 M - 57585 (S2)-414

Q.5 Using Nodal analysis, find I in the circuit of Fig. 5.

Fig. 5

Q.6 Classify filters and analyze any one type of filter in detail.

SECTION-C

Q.7 Synthesize a network using Foster-I and Foster -II forms for the impedance function :

$$Z(s) = \frac{s(s^2 + 9)}{(s^2 + 5)(s^2 + 13)}$$

- Q.8 If an m-derived high pass filter has design impedance of 500Ω and cut off frequency of 3.5 KHz and infinite attenuation at 2.6 KHz, design the filter.
- Q.9 Find current through Z_L in Fig. 6 using Norton's theorem and verify the result using Theorem.

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

3 | M - 57585