FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com

| Roll No. Total N                                                                                                           | No. of Pages:02 |
|----------------------------------------------------------------------------------------------------------------------------|-----------------|
| Total No. of Questions:09                                                                                                  |                 |
| B.Tech. (Aerospace Engineering) (2012 Onwards)<br>FLUID MECHANICS & MACHINERY<br>Subject Code : ASPE-201<br>M.Code : 70903 | (Sem3)          |
| Time : 3 Hrs.                                                                                                              | Max. Marks:60   |
| INSTRUCTIONS TO CANDIDATES :                                                                                               |                 |

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks 1. each.
- SECTION-B contains FIVE questions carrying FIVE marks each and students 2. have to attempt any FOUR questions.
- SECTION-C contains THREE questions carrying TEN marks each and students 3. have to attempt any TWO questions.

#### **SECTION-A**

#### Attempt the following : 1)

- a. Define specific gravity
- itstRanker.com b. Define dynamic viscosity
- c. Define Gauge pressure
- d. Define Pathline
- e. Define degree of reaction
- f. Define coefficient of discharge.
- g. State Buckingham pi theorem.
- h. Define Fluid.
- i. What is the SI unit for 'Head' as used in Hydraulic machines?
- Define specific speed. i.



www.FirstRanker.com

### **SECTION-B**

- 2) Derive Bernoulli's equation. NOTE: Mention the assumptions clearly. [2M for assumptions, 3M for the derivation]
- 3) Explain the working of Mercuric manometer and explain how absolute pressure and gauge pressure of a system can be measured using this manometer.
- 4) Explain the working of Fransis turbine with help of a neat velocity diagram.
- 5) A velocity field is given by the relation  $V = \left(\frac{V_o}{I}\right)(x\vec{i} y\vec{j})$ . Where  $V_o$  and I are constants.
  - i. Find the location in the flow field where the speed is equal to Vo
  - ii. Determine the streamlines.
- 6) With the help of a neat diagram, explain the working of a vane pump.

NFIFST

## SECTION-C

- 7) A centrifugal water pump has an impeller of width h = 5 cm, an inner radius of 7 cm, and an outer radius of 30 cm. It turns at 1,800 rpm. The inlet velocity is 6 m/s and the exit velocity is 7 m/s. Find the theoretical values of :
  - a) Discharge rate
  - b) Torque
  - c) Head
  - d) Pressure rise across the impeller.
- 8) Apply Buckingham Pi theorem to a turbomachine and obtain its non-dimensional parameters.
- 9) Through control volume analysis, obtain Euler's equation for turbomachinery.

# NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.