Roll No. \square Total No. of Pages : 02
Total No. of Questions : 09

B.Tech.(Automation \& Robotics) (2011 \& Onwards)
 MATHEMATICS - III
 Subject Code : BTAR-301
 M.Code : 63001

(Sem.-3)

Time : 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1. Write briefly :
a) What is the laplace transform of unit impulse function?
b) Find Laplace transform of $\frac{e^{-t} \sin t}{t}$
c) Find the inverse Laplace Transform of $\left(\log \frac{s+1}{s-1}\right)$
d) Show that $P_{n}(1)=1$
e) Prove that $\mathrm{J}_{\mathrm{n}}(\mathrm{x})=\frac{x}{2 n}\left[J_{n-1}(x)+J_{n+1}(x)\right]$
f) Define analytic function.
g) Show that the transformation $w=\frac{2 z+3}{z-4}$ maps the circle $x^{2}+y^{2}-4 x=0$ into straight line $4 u+3=0$
h) For conformal transformation $w=z^{2}$ prove that angle of rotation at $z=1+i$ is $\pi / 4$.
i) Find the nature and location of singularities of $\frac{z-\sin z}{z^{2}}$
j) Find the sum of residues of $f(z)=\frac{\sin z}{z \cos z}$ at its poles inside the circle $|z|=2$.

SECTION-B

2. Evaluate $L\left(\sqrt{t}-\frac{1}{\sqrt{t}}\right)^{3}$
3. Find the inverse Laplace transform of $\frac{5 s+3}{(s-1)\left(s^{2}+2 s+5\right)}$
4. Solve in series the equation

$$
9 x(1-x) y^{\prime \prime}-12 y^{\prime}+4 y=0
$$

5. If $u-v=(x-y)\left(x^{2}+4 x y+y^{2}\right)$ and $f(z)=u+i v$ is an analytic function of $z=x+i y$, find $f(z)$ in terms of z.
6. Verify Cauchy's theorem by integrating $e^{i z}$ along the boundary of triangle with the vertices at the points $1+i,-1+i,-1-i$.

SECTION-C

7. Define Harmonic function. Show that the function

$$
u=e^{-2 x y} \sin \left(x^{2}-y^{2}\right)
$$

is harmonic. Find the conjugate function v and express $u+i v$ as an analytic function of z.
8. Obtain the Fourier series for $f(x)=\left\{\begin{array}{rr}\pi x, & 0 \leq x \leq 1 \\ \pi(2-x), & 1 \leq x \leq 2\end{array}\right.$
9. Expand $\frac{1}{[(z-1)(z-2)]}$ in region

$$
|\mathrm{z}|<1,1<|\mathrm{z}|<2,|\mathrm{z}|>2,0<|\mathrm{z}-1|<1
$$

