

www.FirstRanker.com

www.FirstRanker.com

(S2)-43

Roll No. Total No. of Pages : 02

Total No. of Questions: 09

B.Tech. (Petroleum Refinery Engineering) (2013 Onwards) (Sem.-3)

ENGINEERING MATHEMATICS-III

Subject Code : BTAM-201 M.Code : 72158

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

Write briefly :

- a) Can $f(x) = \sin(1/x)$, $-\pi \le x \le \pi$ be expanded in Fourier series?
- b) Find the Laplace transform of $f(t) = (\sin t \cos t)^2$.
- c) Give the Laplace transform of Unit Impulse function.
- d) Find the Laplace inverse of $\frac{s+3}{s^2+6s+13}$.
- e) Find the singular point of the differential equation $P_0(x) y'' + P_1(x) y' + P_2(x)y = 0$.
- f) Formulate the PDE from : $z = ax + a^2y^2 + b$.
- g) Solve the PDE: $\frac{\partial^3 z}{\partial x^2 \partial y} = \cos(2x + 3y)$.
- h) Find the poles of : $f(z) = \frac{1}{(z-1)(z-2)}$.
- i) Show that the function $u = e^{-x} (x \sin y y \cos x)$ is harmonic.
- j) Find the residue of $f(z) = \frac{z^2 2z}{z^2 + 4}$ at its poles.

1 M-72158

www.FirstRanker.com

www.FirstRanker.com

(S2)-43

SECTION-B

- 2. Find Fourier series expansion of $f(x) = x^2$, $-\pi < x < \pi$. Hence deduce $\sum_{n=1}^{\infty} \frac{1}{n^2}$.
- 3. a) Evaluate L $\{e^{-2t}t\cos t\}$.
 - b) Find Laplace inverse of $\log \left(\frac{1+s}{s} \right)$.
- 4. Find the power series solution of the differential equation $(1 x^2)y'' 2xy' + 2y = 0$ about x = 0.
- 5. Solve the PDE: $(x^2 y^2 z^2) p + 2xyq = 2xz$.
- 6. Find analytic function, whose real part is $u = \frac{\cos x}{\cosh 2y \cos 2x}$

SECTION-C

- 7. a) Using Laplace transform, solve $y'' + 2y 3y = \sin t$, given that y(0) = y'(0) = 0.
 - b) Expand $f(x) = \begin{cases} x, & 0 < x < \frac{\pi}{2} \\ \pi x, & \frac{\pi}{2} < x < \pi \end{cases}$, as a half range sine series.
- 8. a) Solve the PDE: (mz ny) p + (nx lz) q = ly mx.
 - b) Find the image of the w-plane of the circle |z 3| = 2 in the z-plane.
- 9. Solve the equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ subject to the conditions $u(x, 0) = 3 \sin nx$, u(0, t) = 0 and u(l,t) = 0, where 0 < x < l, t > 0.

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

2 | M-72158