

www.FirstRanker.com

www.FirstRanker.com

Roll No.							Total No. of Pages: 0	2

Total No. of Questions: 09

B.Tech.(Petroleum Refinary Engineering) (2013 Onwards) (Sem.-3)

FLUID FLOW

Subject Code: BTPC-302 M.Code: 72191

Time: 3 Hrs. Max. Marks: 60

INSTRUCTION TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

Q.1 Answer briefly:

- (a) What is the difference between specific gravity and mass density?
- (b) What is the unit of force in SI and FPS system?
- (c) Explain the different type of fluid based on rheological diagram.
- (d) Write down the statement of Buckingham II method.
- (e) What is Buoyancy? How to calculate the buoyancy force?
- (f) How to differentiate positive displacement and centrifugal pump?
- (g) Explain Mach number with its significance.
- (h) Explain the concept of path and stream lines.
- (i) What are the major assumptions taken in Navier-Stokes equation?
- How the concept of dimensional analysis helps in scale-up process.

SECTION-B

- Q.2 If the velocity profile of a fluid over a plate is parabolic (u = ay² + by + c where a, b, c are constant) with the vertex 20 cm from the plate, where the velocity is 120 cm/sec. Calculate the velocity gradients and shear stresses at a distance of 0, 10, 20 cm from the plate, if the viscosity of the fluid is 8.5 poise.
- Q.3 Explain the concept of Boundary layer theory.

1 | M-72191 (S2)-440

- Q.4 Derive the rational equation through Buckingham pi-method for a pipe flow having the following quantities affecting the flow phenomenon-
 - F the unit boundary friction against which the fluid flows; μ the viscosity; ρ the mass density; V the velocity of flow; D the pipe diameter; t the pipe surface roughness.
- Q.5 Pressure gauge B is to measure the pressure at point A in a water flow. If the pressure at B is 87 kPa, estimate the pressure at A, in kPa. Assume all fluids are at 20°C. Data: specific weight of water, mercury and oil are 9790, 133100 and 8720 N/m³ respectively.

Fig.1

Q.6 Find the Mach number of a rocket travelling in standard air with a speed of 1600km/h at 15°C.

SECTION-C

- Q.7 (a) What is NPSH? How to calculate it?
 - (b) Derive the expression for Euler equation of motion.
- Q.8 The water is flowing through a pipe having diameters 20 cm and 10 cm at section 1 and section 2 respectively. The rate of flow through pipe is 35 litres/s. The section 1 is 6 m above datum and section 2 is 4 m above datum. If the pressure at section 1 is 39.24 N/cm², find the intensity of pressure at section 2.
- Q.9 A centrifugal pump rotating at 1000 rpm delivers 160 litres/s of water against a head of 30 m. The pump is installed at a place where atmospheric pressure is 1×105 Pa (abs.) and vapour pressure of water is 3 k pa (abs). The head loss in suction pipe is equivalent to 0.2 m of water calculate:
 - (a) Minimum NPSH, and
 - (b) Maximum allowable height of the pump from free surface of water in the sump.

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

2 M-72191 (S2)-440

