Roll No. \square

B.Tech.(ME) (2011 Onwards) (Sem.-4) STRENGTH OF MATERIALS-II

 Subject Code : BTME-401

 Subject Code : BTME-401
 M.Code : 59129

Time : 3 Hrs.
Max. Marks : 60

INSTRUCTION TO CANDIDATES:

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt ANY FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt ANY TWO questions.

SECTION-A

1. Answer briefly :
a) What is energy of distortion?
b) What is the necessity of theory of failure?
c) Define stiffness of the spring.
d) For what purposes cylindrica-and spherical shells are used?
e) State Lame's equation.
f) Which type of stresses are produced in a rotating thin disc of uniform thickness?
g) What is meant by trapezoidal section?
h) Where does the maximum vertical shear stress occur in an I-section?
i) Discuss the importance of shear centre.
j) Identify three principal stresses in a thick cylinder.

SECTION-B

2. Compare the strains produced in a body subjected to same amount of load when applied gradually and when suddenly.
3. A closed coil helical spring has mean diameter of 75 mm and spring constant of $80 \mathrm{kN} / \mathrm{m}$. It has 8 coils. What is the suitable diameter of the spring wire if maximum shear stress is not to exceed $250 \mathrm{MN} / \mathrm{m}^{2}$? Modulus of rigidity of the spring wire material is $80 \mathrm{GN} / \mathrm{m}^{2}$. What is maximum axial load the spring can carry?
4. For a thin cylindrical shell, the length/diameter ratio is 3 and its volume is $20 \mathrm{~m}^{3}$. The safe tensile stress, for the shell material is 100 MPa . Determine the cylinder diameter and wall thickness if it is to contain water at an absolute pressure of 2 MPa .
5. Two closed coiled helical steel springs are connected in series to form a composite spring of stiffness $1.5 \mathrm{kN} / \mathrm{m}$. In both the springs, mean coil radius is 4 times the wire diameter. One spring is made out of 3 mm diameter wire and has 20 turns, whereas the other spring has 15 turns. Determine the wire diameter in case of second spring. $\mathrm{C}=80 \mathrm{GPa}$.
6. Write a brief note on stress in rotating discs.

SECTION-C

7. A bar of mild steel carries an axial pull of 10 kN and a transverse shear force of 5 kN . Taking the elastic limit in tension as 240 MPa , a factor of safety 3 and Poission's ratio 0.3 , calculate the diameter of the bar if the criterion is (i) Maximum principle stress theory, (ii) Maximum strain energy theory.
8. A thick cylinder of 150 mm outside radius and 100 mm inside radius is subjected to an external pressure of $30 \mathrm{MN} / \mathrm{m}^{2}$ and internal pressure of $60 \mathrm{MN} / \mathrm{m}^{2}$. Calculate the maximum shear stress in the material of the cylinder at the inner radius.
9. A beam 100 mm wide and 150 mm deep in cross-section is simply supported and carries a uniformly distributed load over its entire span of 2 m . If the allowable stresses for the beam material are 30 MPa in bending and 2 MPa in shear, calculate the maximum load which the beam can carry.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

