

www.FirstRanker.com

www.FirstRanker.com

l No	. of	Pages	: 02
ı	l No	l No. of	I No. of Pages

Total No. of Questions: 09

B.Tech.(ME) (2011 Onwards) (Sem.-4) STRENGTH OF MATERIALS-II

Subject Code : BTME-401 M.Code : 59129

Time: 3 Hrs. Max. Marks: 60

INSTRUCTION TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt ANY FOUR questions.
- SECTION-C contains THREE questions carrying TEN marks each and students have to attempt ANY TWO questions.

SECTION-A

1. Answer briefly:

- a) What is energy of distortion?
- b) What is the necessity of theory of failure?
- c) Define stiffness of the spring.
- d) For what purposes cylindrical and spherical shells are used?
- e) State Lame's equation
- f) Which type of stresses are produced in a rotating thin disc of uniform thickness?
- g) What is meant by trapezoidal section?
- h) Where does the maximum vertical shear stress occur in an I-section?
- Discuss the importance of shear centre.
- Identify three principal stresses in a thick cylinder.

1 | M-59129 (S2)-79

SECTION-B

- Compare the strains produced in a body subjected to same amount of load when applied gradually and when suddenly.
- 3. A closed coil helical spring has mean diameter of 75 mm and spring constant of 80 kN/m. It has 8 coils. What is the suitable diameter of the spring wire if maximum shear stress is not to exceed 250 MN/m²? Modulus of rigidity of the spring wire material is 80 GN/m². What is maximum axial load the spring can carry?
- For a thin cylindrical shell, the length/diameter ratio is 3 and its volume is 20 m³. The safe tensile stress, for the shell material is 100 MPa. Determine the cylinder diameter and wall thickness if it is to contain water at an absolute pressure of 2 MPa.
- Two closed coiled helical steel springs are connected in series to form a composite spring
 of stiffness 1.5 kN/m. In both the springs, mean coil radius is 4 times the wire diameter.
 One spring is made out of 3 mm diameter wire and has 20 turns, whereas the other spring
 has 15 turns. Determine the wire diameter in case of second spring. C = 80 GPa.
- Write a brief note on stress in rotating discs.

SECTION-C

- 7. A bar of mild steel carries an axial pull of 10 kN and a transverse shear force of 5 kN. Taking the elastic limit in tension as 240 MPa, a factor of safety 3 and Poission's ratio 0.3, calculate the diameter of the bar if the criterion is (i) Maximum principle stress theory, (ii) Maximum strain energy theory.
- A thick cylinder of 150 mm outside radius and 100 mm inside radius is subjected to an
 external pressure of 30 MN/m² and internal pressure of 60 MN/m². Calculate the maximum
 shear stress in the material of the cylinder at the inner radius.
- A beam 100 mm wide and 150 mm deep in cross-section is simply supported and carries a
 uniformly distributed load over its entire span of 2 m. If the allowable stresses for the beam
 material are 30 MPa in bending and 2 MPa in shear, calculate the maximum load which the
 beam can carry.

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

2 | M-59129 (S2)-79

