Roll No.

Total No. of Pages : 02
Total No. of Questions: 18

> B.Tech.(CSE) (2011 Batch) (Sem.-4)
> MATHEMATICS - III
> Subject Code : BTCS-402
> M.Code : 56605

Time : 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

Answer briefly :

1. Find the Fourier series expansion of the periodic function $f(x)=x,-2<x<2$.
2. Find inverse Laplace transform of $\frac{(s+1)^{2}}{(s-2)^{4}}$.
3. Find Laplace transform of $(t-2)^{2} e^{3 t}$.
4. Eliminate the arbitrary constants a and b from $z=a x+b y+a^{2} b^{2}$, to obtain the partial differential equation governing it.
5. Find general solution of linear partial differential equation $2 y z p+z x q=3 x y$
6. Show that the function $f(z)=\bar{z}$ is a continuous at the point $z=0$ but differentiable at $z=0$.
7. Define Eigen Values and Eigen vectors of a square matrix.
8. The number of emergency admissions each day to a hospital is found to have Poisson distribution with mean 4 . Find the probability that on a particular day there will be no emergency admissions.
9. Obtain the approximate value of y (1.2) for the initial value problem $y^{\prime}=-2 x y^{2}, y(1)=1$ using Euler's method.
10. Derive the expression of moment generating function about origin of a normal distribution.
www.FirstRanker.com

SECTION-B

11. Obtain the Fourier series expansion of the function $f(x)=4-x^{2},-2 \leq x \leq 2$ and hence show that $\frac{\pi^{2}}{12}=1-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\ldots .$.
12. Using Laplace transform, solve the initial value problem

$$
y^{\prime \prime}+y=t, y(0)=1, y^{\prime}(0)=0 .
$$

13. Find the solution of the given homogeneous partial differential equation

$$
\left(D^{4}-2 D^{2} D^{\prime 2}+D^{\prime 4}\right) z=0 .
$$

14. Using Gauss Seidel iteration method, solve $4 x+2 z=6,5 y+2 z=-3,5 x+4 y+10 z=11$.
15. Find the approximate values of $y(x)$ at the given points using Runge-Kutta method of fourth order for the initial value problem $y^{\prime}=\sqrt{x+y}, y(0.4)=0.41$ and given is $h=0.2$ and $x \in[0.4,0.8]$.

SECTION-C

16. i) State and prove second shifting property of Laplace transformation.
ii) Show that the function $u(x, y)=2 x+y^{3}-3 x^{2} y$ is harmonic. Find its conjugate harmonic function $v(x, y)$ and the corresponding analytic function $f(z)$.
17. i) Solve $5 x \frac{d y}{d x}+y^{2}-2=0$ given is $y(4)=1$ for $y(4.1)$ and $y(4.2)$, taking $h=0.1$ using Modify Euler methods.
ii) A continuous random variable X is normally distributed with mean 16 and standard deviation 5. Find the probability that $X \leq 25$ and $0 \leq X \leq 16$.
18. i) The heights of 8 males participating in an athletic event are found to be 175 cm , $168 \mathrm{~cm}, 165 \mathrm{~cm}, 170 \mathrm{~cm}, 167 \mathrm{~cm}, 160 \mathrm{~cm}, 173 \mathrm{~cm}$ and 168 cm . Can we conclude that the average height is greater than 165 cm ? Test at 5% level of significance.
ii) Two random samples of sizes 9 and 7 gave the sum of squares of deviations from their respective means as 175 and 95 respectively. Can they be regarded as drawn from normal populations with the same variance?

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

