

Roll No.				Total No. of Pages: 02

Total No. of Questions: 09

B.Tech.(Petroleum Refinary Engineering) (2013 Batch) (Sem.-4)

CHEMICAL ENGINEERING THERMODYNAMICS

Subject Code: BTPC-404/BTCH-305

M.Code: 72427
Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES :

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1. Answer briefly:

- a) Find the density of nitrogen gas at NTP.
- b) State 2nd law of thermodynamics.
- c) What is throttling process? Give an example.
- d) What is the significance of H-x diagram?
- e) What do you understand by dew point and bubble point?
- f) What is the physical significance of partial molar properties?
- g) Define equilibrium constant. What is its significance?
- h) What is the effect of pressure on equilibrium constant in a gas phase reaction?
- i) Write two major applications of Gibb's Duhem equation.
- j) What do you understand by theoretical flame temperature?

SECTION-B

2. Calculate ΔU and ΔH in kJ for 1 kmol water, as it is vaporized at a constant temperature of 373 K and constant pressure of 101.3 kPa. The specific volumes of liquid and vapour at these conditions are 1.04×10^{-3} and 1.675 m³/kmol respectively; 1030 kJ of heat is added to water for this change.

1 M-72427 (S2)-88

- 3. Write the Clapeyron equation and hence find the melting point of mercury at 10 bar, where mercury has a density of 13.69×10^3 kg/m³ in the liquid state and 14.193×10^3 kg/m³ in the solid state, both measured at the melting point of 234.33 K and 1 bar. Heat of fusion of mercury is 9.7876 kJ/kg.
- 4. Find the volume of *n*-pentane at 500 K and 20 bar following Van der waals equation of state. Tc = 469.6 K, Pc = 33.7 bar
- 5. State Hess's law of constant heat summation. Calculate heat of formation of the gaseous ethyl alcohol at 298 K using following data:

Standard heat of formation of CO_2 (g) = -393.51 kJ/mol

Standard heat of formation of $H_2O(1) = -285.83 \text{ kJ/mol}$

Heat of combustion of gaseous ethyl alcohol at 298 K = -1410.09 kJ/mol

6. Derive the expression for effect of temperature on fugacity coefficient.

SECTION-C

- 7. Show that the fugacity of a gas obeying the van der waals equation of state is given by In $f = \frac{b}{V b} \frac{2a}{RTV} + ln\frac{RT}{V b}$, where a and b are van der Waals constants.
- 8. Describe the criteria for chemical reaction equilibria. Calculate the equilibrium constant for the reaction $N_2 + 3$ $H_2 \rightarrow 2$ NH_3 at 500 K assuming that the standard heat of reaction is constant in temp. range 298 K to 500 K. Standard heat of formation and standard free energy of formation of NH_3 at 298 K are -46100 J/mol and -16500 J/mol respectively.
- 9. For a binary system of components (1) and (2), the vapour pressures are given by the Antoine's equations

$$ln \ P_1^{sat} = 13.818 - \frac{2477.07}{T - 40.00} \quad ; \quad ln \ P_2^{sat} = 13.859 - \frac{2911.32}{T - 56.56}$$

P is in kPa and T in K. Assume the solution as ideal. Calculate:

- a) The composition of liquid and vapour in equilibrium at 95 kPa and 335 K.
- b) The composition of the vapour in equilibrium with a liquid containing 40% (mol) pentane and the equilibrium temperature at P = 95 kPa.
- c) The total pressure and the vapour composition in equilibrium with a liquid of composition $x_1 = 0.40$ at T = 333.2 K.

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

2 M-72427 (S2)-88