

Roll No. Total No. of Pages: 02

Total No. of Questions: 09

B.Tech.(Automation & Robotics) (2011 & Onward) (Sem.-4)

LINEAR CONTROL SYSTEMS

Subject Code: BTEE-402

M.Code: 57108

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

O1. Write briefly:

- a. What do you mean by plant and system? Explain.
- b. List the mechanical and electrical analogies.
- c. Explain how the pole zero locations effect the stability of the system.
- d. Explain the step and impulse test input signals.
- e. List the advantages and disadvantages of root locus technique.
- f. What do you mean by relative stability? Explain.
- g. Discuss the need of compensation.
- h. List the main characteristics of servomotors.
- i. Define state and state vector.
- j. What is Controllability and Observability of a system?

SECTION-B

- Q2. Explain the following in detail with suitable examples
 - a. Open and closed loop systems
 - b. Continuous and sampled data control systems

1 M - 57108 (S2)-77

Q3. What is the need of signal flow graphs? List the different rules to draw the signal flow graphs. Determine the overall transmittance relating x_2 and x_i for the signal flow graph shown below

Fig.1

- Q4. Using the Routh-Hurwitz criterion determine the relation between K and T so that unity feedback control system having open loop transfer function $G(s)H(s) = \frac{K}{s[s(s+10)+T]}$ is stable.
- Q5. The open loop transfer function of a system is given by $G(s)H(s) = \frac{K}{s(sT-1)}$ of the system using Nyquist Criterion.
- Q6. Explain the different steps required to draw a root locus.

SECTION-C

- Q7. Discuss the following:
 - a. Tachogenerators
 - b. Series and parallel compensators
- Q8. Sketch the Bode plot for the transfer function given below:

$$G(s)H(s) = \frac{48(s+10)}{s(s+20)(s^2+2.4s+16)}$$

Apply correction to magnitude plot for the quadratic term and comment on the stability.

Q9. Find controllability and observability of given system:

$$\begin{bmatrix} x^1 \\ x^2 \\ x^3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} \begin{bmatrix} x^1 \\ x^2 \\ x^3 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} u(t)$$

$$y = \begin{bmatrix} 10 & 5 & 1 \end{bmatrix} \begin{bmatrix} x^1 \\ x^2 \\ x^3 \end{bmatrix}$$

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

2 | M - 57108 (S2)-77