Roll No.
Total No. of Pages : 02
Total No. of Questions : 09

B.Tech.(Aerospace Engg.) (2012 Onwards)/B.Tech.(ANE) (Sem.-4)
 NUMERICAL ANALYSIS
 Subject Code : ANE-204
 M.Code : 60512

Time : 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1. Answer briefly :
(a) Find the absolute error if $\mathrm{X}=0.00545828$ is truncated to three decimal digits.
(b) What is the order of convergence in Newton-Raphson method?
(c) Find a double root of the equation $x^{3}-5 x^{2}+8 x-4=0$ which is near 1.8 .
(d) What is Lagrange's interpolation formula?
(e) Find $y^{\prime}(0)$ from the following table:

$x:$	0	1	2	3	4	5
$y:$	4	8	15	7	6	2

(f) Solve the equations $x+y=2$ and $2 x+3 y=5$ using Gauss elimination method.
(g) What is the difference between direct and iterative method of solving simultaneous linear equations method?
(h) if $\frac{d y}{d x}=x+y, y(0)=1$, and $y^{(1)}=1+x+x^{2} / 2$ then what is the value of $y^{(2)}(x)$ using Picard's method?
(i) Write Milne's corrector formula.
(j) What is the standard 5-point formula to solve the Laplace equation $\mathrm{U}_{x x}+\mathrm{U}_{y y}=0$?

SECTION-B

2. If $\mathrm{r}=\mathrm{h}\left(4 \mathrm{~h}^{5}-5\right)$, find the percentage error in r at $\mathrm{h}=1$ if the error in h is 0.04 .
3. Apply iteration method to find the negative root of the equation $x^{3}-2 x+5=0$ correct to four decimal places.
4. Find $f(22)$ from the Gauss forward formula :

$x:$	20	25	30	35	40	45
$f(x):$	354	332	291	260	231	204

5. Find the maximum and minimum value of y from the following table :

$x:$	-2	-1	0	1	2	3	4
$y:$	2	-0.25	0	-0.25	2	15.75	56

6. Apply factorization method to solve the equations :
$3 x+2 y+7 z=4 ; 2 x+3 y+z=5 ; 3 x+4 y+z=7$.

SECTION-C

Q7. Using Runge Kutta method of order 4, find y for $x=0.1,0.2,0.3$ given that $\frac{d y}{d x}=x y+y^{2}, y(0)=1$. Continue the solution at $\mathrm{x}=0.4$ using Milne's method.

Q8. Find the largest eigen value and the corresponding eigen vector of the matrix,

$$
\left(\begin{array}{ccc}
25 & 1 & 2 \\
1 & 3 & 0 \\
2 & 0 & -4
\end{array}\right) \text {. Take }\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]^{\mathrm{t}} \text { as initial eigen vector. }
$$

Q9. Solve the Laplace equation $u_{x i}+\mathfrak{u}_{y y}=0$ in the domain of the following figure by Jacobi's method.

Fig. 1
NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

