Roll No.
Total No. of Pages : 02
Total No. of Questions: 09

> B.Tech.(ME) (2011 Onwards) (Sem.-5)
> MATHEMATICS-III
> Subject Code : BTAM-500
> M.Code : 70601

Time: 3 Hrs.
Max. Marks : 60

INSTRUCTION TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt ANY FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt ANY TWO questions.

SECTION-A

1. Write briefly :
a) Expand $\pi x-x^{2}$ in half range series in interval $(0, \pi)$ upto first three terms.
b) Find Laplace transform of $t^{3} e^{-3 t}$
c) Find the inverse Laplace Transform of $\left(\frac{4 s+15}{16 s^{2}-25}\right)$
d) Describe the conditions required for the Fourier expansion.
e) Express $f(x)=x^{4}+3 x^{3}-x^{2}+5 x-2$ in terms of Legendre polynomials.
f) Evaluate $\int x^{3} j_{o}(x) d x$
g) Form the partial differential equation $z=(x+y) \phi\left(x^{2}-y^{2}\right)$
h) Solve $\frac{\partial^{2} z}{\partial x^{2}}+z=0$ given that $x=0, z=e^{y}$ and $\frac{\partial z}{\partial x}=1$.
i) Define harmonic function
j) Check whether $f(z)=\sqrt{|x y|}$ is analytic at origin or not?

SECTION-B

2. Obtain Fourier series to represent $f(x)=\frac{1}{4}(\pi-x)^{2}, 0<x<2 \pi$.
3. Solve the initial value problem

$$
y^{\prime \prime}-5 y^{\prime}+4 y=e^{2 t}, y(0)=\frac{19}{12^{\prime}} y^{\prime}(0)=\frac{8}{3}
$$

4. Find the frobenius series solution about $x=0$ of equation

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+6 y=0
$$

5. Find bilinear transformation which maps the points $z=1, i,-1$ onto the points $w=i, 0,-i$. Hence find
a) The image of $|z|<1$
b) Invariant points of transformation.
6. Solve $\left(x^{2}-y z\right) p+\left(y^{2}-z x\right) q=z^{2}-x y$

SECTION-C

7. State and prove convolution theorem. Apply convolution theorem to evaluate $L^{-1}\left(\frac{s}{\left(s^{2}+a^{2}\right)^{2}}\right)$
8. Find the residue of $f(z)=\frac{z^{3}}{(z-1)^{4}(z-2)(z-3)}$ at its poles and hence evaluate $\oint_{C} f(z) d x$ where c is circle $|z|=2.5$
9. Solve the Laplace equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$ subject to the conditions
$u(0, y)=u(x, y)=u(x, 0)=0, u(x, a)=\frac{\sin n \pi x}{l}$

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

