Roll No. \square
Total No. of Questions : 09

B.Tech (Automation \& Robotics) (2011 \& Onwards) (Sem.-5)
 NUMERICAL METHODS IN ENGINEERING

Subject Code : ME-309
M.Code : 70482

Time : 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt ANY FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt ANY TWO questions.

SECTION-A

1. Write briefly :
i) Write Newton's formula for interpolation.
ii) Find the condition number of the function $f(x)=\sin x$.
iii) Define a cubic spline interpolant with clampled boundary.
iv) Determine the Lagrange interpolating polynomial passing through the points (1, 1), $(2,4)$ and $(3,9)$.
v) Find the l_{∞} norm of the vector $(1,-5,9)^{\mathrm{t}}$.
vi) Explain least square curve fitting.
vii) Compute $\int_{0}^{2} x e^{x} d x$ using Simpson's rule.
viii) Use the forward-difference formula to approximate the derivative of $f(x)=\ln x$ at $x_{0}=1.8$ using $h=0.1$.
xi) What is the order of convergence when Newton Raphson's method is applied to the equation $x^{2}-6 x+9=0$ to find its multiple root.
x) Out of chopping of numbers and rounding off of numbers, which one introduce less error?

SECTION-B

2. Use forward-difference method with steps sizes $h=0.1$ and $k=0.01$ to approximate the solution to the heat equation :

$$
\frac{\partial u}{\partial t}(x, t)-\frac{\partial^{2} u}{\partial x^{2}}(x, t)=0, \quad 0<x<1, t \geq 0
$$

with boundary conditions

$$
u(0, t)=v(1, t)=0, t>0,
$$

and initial condition

$$
u(x, 0)=\sin (\pi x), 0 \leq x \leq 1 .
$$

3. Apply Taylor's method of order 2 with $\mathrm{N}=10$ to initial value problem

$$
y^{1}=y-t^{2}+\mathbb{O}, 0 \leq t \leq 2, y(0)=0.5
$$

4. The following data is given.

1.0	1.3	1.6	1.9	2.2
0.7651977	0.6200860	0.4554022	0.2818186	0.1103623

Use Lagrange's formula to approximate $f(1,5)$.
5. Use the data points $(0,1),(1, e),\left(2, e^{2}\right)$ and (3, $\left.e^{3}\right)$ to form a natural spline $\mathrm{S}(x)$ that approximates $f(x)=e^{x}$.
6. Find the largest interval in which p^{*} must lie to approximate p with relative error at most 10^{-4} for $p=(17)^{\frac{1}{3}}$.

SECTION-C

7. Derive Secant's formula for solving the equation $f(x)=0$ (specifying the assumptions made). Use the secant method to solve the equation $x=\cos x$ starting with an initial guesses 0.5 and $\frac{\pi}{4}$.
8. Use Gauss elimination method with partial pivoting to solve the following linear system of equations.

$$
\begin{gathered}
\pi x_{1}+\sqrt{2} x_{2}-x_{3}+x_{4}=0, \\
e x_{1}-x_{2}+x_{3}+2 x_{4}=1, \\
x_{1}+x_{2}-\sqrt{3} x_{3}+x_{4}=2, \\
-x_{1}-x_{2}+x_{3}-\sqrt{5} x_{4}=3 .
\end{gathered}
$$

9. Determine the values of h that will ensure an approximation error of less than 10^{-4} when approximating $\int_{0}^{2} e^{2 x} \sin 3 x d x$ and employing :
a) Composite trapezoidal rule.
b) Composite Simpson's rule.

NOTE : Disclosure of identity by writing mobile number or making passing request on any page of Answer sheet will lead to UMC case against the Student.

