Roll No. \square Total No. of Pages :02
Total No. of Questions : 09

B.Tech.(ANE) (Sem.-5)
 AIRCRAFT PERFORMANCE
 Subject Code : ANE-315
 M.Code : 60524

Time : 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

Q. 1 Distinguish between the following :
(a) 'Low Wing loading' and 'High wing loading'
(b) 'Range' and 'Endurance'.
(c) 'Aerodynamic Center' and 'Centerof Gravity'.
(d) 'Geometric altitude' and 'Geopotential altitude'.
(e) 'Troposphere' and 'Stratosphere'.
(f) 'Washin' and 'Washout'.
(g) 'Camber' and 'Camber line'.
(h) 'Dihedral angle' and 'Anhedral angle'.
(i) 'Mach Number' and 'Critical Mach number'.
(j) 'Skin friction drag' and 'Pressure drag'.

SECTION-B

Q. 2 Calculate the standard atmospheric values of T, p and ρ at a geo-potential altitude of 30 km . The values of T, p and ρ at 12 km altitude are $216.66 \mathrm{~K}, 19399 \mathrm{Nm}^{-2}$ and $0.31194 \mathrm{~kg}-\mathrm{m}^{3}$ respectively. Assume Lapse rate of $+2.8 \mathrm{~K} / \mathrm{km}$ above 25 km altitude.
Q. 3 Explain 'Delta Wing Aerodynamics' at Low Speed with the help of labelled illustration/plots.
Q. 4 Derive the expression for lift coefficient, drag coefficient and speed for minimum drag condition.
Q. 5 Define and explain various high lift devices. Show their effect on lift curve slopes.
Q. 6 Explain the nomenclature of '4-digit' and ' 5 -digit' NACA series airfoils.

SECTION-C

Q. 7 Gulfstream-IV twin turbofan executive transport with weight of 200000 N , planform area of $80 \mathrm{~m}^{2}$ and drag polar as $\mathrm{C}_{\mathrm{D}}=0.015+0.08 \mathrm{C}_{\mathrm{L}}{ }^{2}$ is flying at an altitude of 10 km ($\rho=0.413 \mathrm{~kg} / \mathrm{m}^{3}$). Calculate :
(a) Lift coefficient corresponding to $\left(\mathrm{C}_{\mathrm{L}}^{3 / 2} / \mathrm{C}_{\mathrm{D}}\right)_{\max },\left(\mathrm{C}_{\mathrm{L}} / \mathrm{C}_{\mathrm{D}}\right)_{\max }$, and $\left(\mathrm{C}_{\mathrm{L}}^{1 / 2} / \mathrm{C}_{\mathrm{D}}\right)_{\max }$ conditions.
(b) $\left(\mathrm{C}_{\mathrm{L}}{ }^{3 / 2} / \mathrm{C}_{\mathrm{D}}\right)_{\text {max }},\left(\mathrm{C}_{\mathrm{L}} / \mathrm{C}_{\mathrm{D}}\right)_{\text {max }}$ and $\left(\mathrm{C}_{\mathrm{L}}^{1 / 2} / \mathrm{C}_{\mathrm{D}} D_{\text {max }}\right.$ values and their ratio.
(c) Velocities at which $\left(\mathrm{C}_{\mathrm{L}}^{3 / 2} / \mathrm{C}_{\mathrm{D}}\right)_{\max },\left(\mathrm{C}_{\mathrm{D}} / \mathrm{C}_{\mathrm{D}}\right)_{\max }$, and $\left(\mathrm{C}_{\mathrm{L}}^{1 / 2} / \mathrm{C}_{\mathrm{D}}\right)_{\max }$ occur.
Q. 8 Write notes on the following :
(a) Drag, Drag polar, Drag bucket
(b) V/STOL vehicles
Q. 9 Calculate the total take-off distance at sea level of an aircraft weighing 200000 N and also compare it with the value obtained from approximate relation with the help of following data (Use calculations at $\mathrm{V}_{\infty}=0.7 \mathrm{~V}_{\mathrm{LO}}$): (Assume $\mathrm{C}_{\mathrm{L}}=0.1$ during ground roll)

$\mathrm{C}_{\mathrm{D}}=0.014+0.07 \mathrm{C}_{\mathrm{L}}{ }^{2}$	$\mathrm{k}_{1}=0.02$	$\mathrm{~K}_{\mathrm{uc}}=4.5 \times 10^{-5}$	$\mathrm{~b}=20 \mathrm{~m}$
$\mathrm{~T}=65000 \mathrm{~N}$	$\mathrm{~h}=2.5 \mathrm{~m}$	$\mathrm{~S}=90 \mathrm{~m}^{2}$	$\mu_{r}=0.035$
$\mathrm{C}_{\mathrm{L} \text { max }}=1.5$	$\mathrm{~N}=3$	$\mathrm{e}=0.9$	$\mathrm{~h}_{\mathrm{OB}}=12 \mathrm{~m}$

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

