

www.FirstRanker.com

www.FirstRanker.com

Roll No.	otal No. of Pages : 02
Total No. of Questions : 09	
B.Tech.(Aerospace Engg.) (2012 Onwards AERODYNAMICS-II	s) (Sem.–5)
Subject Code : ASPE-303	
M.Code: 71837	

Time: 3 Hrs.

Max. Marks: 60

INSTRUCTION TO CANDIDATES :

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks 1. each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt ANY FOUR questions.
- SECTION-C contains THREE questions carrying TEN marks each and students 3. have to attempt ANY TWO questions.

SECTION-A

- itstRanker.com 1. Explain the followings briefly :
 - (a) Potential flow
 - (b) Supercritical airfoil
 - (c) Swept wing
 - (d) Drag Polar
 - (e) Flapped aerofoil flowfield
 - (f) Elliptical wing
 - (g) Biot-Savart's law
 - (h) Induced drag
 - (i) Formation flying
 - (j) Ground effect

www.FirstRanker.com

SECTION-B

- 2. Theoretical lift coefficient for a thin, symmetric airfoil in an incompressible flow is $C_1 =$ $2\pi\alpha$. Calculate the lift coefficient for $M_{\infty} = 0.7$. Suggest improved compressibility correction method.
- 3. State the assumptions for thin aerofoil theory and explain important results of thin aerofoil theory for a symmetrical aerofoil.
- 4. Show that as per Prandtl's lifting line theory the geometric angle of attack is equal to the sum of the effective angle and the induced angle of attack.
- 5. Explain critical Mach number and a method to determine it for an aerofoil.
- 6. List high lift devices and Explain the functioning of any two of these devices.

SECTION-C

- 7. Derive an expression for velocity potential equation. State the necessary assumptions.
- g ti MWM.FirstRanket 8. Describe source panel method for simulating the non-lifting flow over a circular cylinder.
- Write short notes on the followings : 9.
 - (a) Slender body theory
 - (b) Conical flow theory

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.