

Roll No. Total No. of Pages: 02

Total No. of Questions: 09

B.Tech.(EE/Electrical & Electronics/Electronics & Electrical)

(2011 Onwards)

(Electrical Engg. & Industrial Control/Electronic Engg.) (2012 Onwards)

(Sem.-6)

NON-LINEAR AND DIGITAL CONTROL SYSTEMS

Subject Code: BTEE-603 M.Code: 71149

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1. Answer briefly:

- (a) Discuss the advantages of state space approach over transfer function approach.
- (b) Explain the term Observability.
- (c) What are singular points?
- (d) What do you mean by an equilibrium point?
- (e) Define limit cycle.
- (f) Define describing function.
- (g) Explain dead zone with a suitable example.
- (h) What are the properties of Lyapunov's function?
- (i) What do you mean by zero order hold?
- (i) Discuss the limitations of Z transform.

SECTION-B

2. The transfer function of a control system is given by :

$$G(s) = \frac{4(s+2)}{s(s+3)(s+4)}$$

Draw the state diagram and obtain the state equation.

1 M-71149 (S2)-2519

3. Draw the phase portrait of the following system, using the method of isoclines:

$$\ddot{\theta} + \dot{\theta} + 0.5\theta = 0$$

- 4. Find out the describing function for Backlash nonlinearity.
- 5. An autonomous system is expressed as follows:

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -m_1 x_2 - m_2 x_1$$

Study the stability of the system using Lyapunov's method and considering the Lyapunov's function as :

$$W = x_1^2 + x_2^2$$

6. Determine the relationship between z and s domains.

SECTION-C

7. A closed loop control system is shown below:

Fig.1

Determine the output in discrete form when a unit step is applied to the input.

- 8. How can you find out Lyapunov's function by Krasovskii's and Variable gradient methods?
- 9. Determine whether the system shown below exhibits self sustained oscillations. If so, determine the stability, frequency, and amplitude of the oscillation.

Fig.2

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

2 M-71149 (S2)-2519