Roll No. \square Total No. of Pages : 02
Total No. of Questions : 09

B.Tech.(CE) (2011 Onwards) (Sem.-6)
 NUMERICAL METHODS IN CIVIL ENGINEERING
 Subject Code : BTCE-604
 M.Code : 71085

Time : 3 Hrs.

Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

Q1. Answer the following :
a) Define least square interpolation.
b) Find an interval containing a root of the equation $x-\cos (x)=0$.
c) Explain Implicit solutions.
d) Determine the Lagrange interpolating polynomial passing through the points $(2,4)$ and $(5,3)$.
e) Explain Explicit solutions.
f) Explain briefly the Newmarks procedure.
g) What is the order of convergence when Newton Raphson's method is applied to the equation $x^{2}-6 x+9=0$ to find its multiple root.
h) Use the forward-difference formula to approximate the derivative of $f(x)=\operatorname{In} x$ at $x_{0}=1.8$ using $h=0.01$.
i) Write a short note on bisection method.
j) Define initial value problem with a suitable example.

SECTION-B

Q2. Use the Runge-Kutta method of order 4 ton approximate the solution of the following initial value problem
$y^{\prime}=y-t^{2}+1,0 \leq t \leq 2, y(0)=0.5$.
Q3. Apply Gauss Jordan method to find the inverse of the matrix

$$
\left[\begin{array}{cc}
-2 & -3 \\
6 & 7
\end{array}\right]
$$

Q4. The following data is given :

1.0	1.3	1.6	1.9	2.2
0.7651977	0.6200860	0.4554022	0.2818186	0.1103623

Use Lagrange interpolation to approximate $f(1.5)$ with $x_{0}=1.6$.
Q5. Find a real root, correct to three decimal places of the equation $2 x-3=\cos (x)$ lying in the interval $\left[\frac{3}{2}, \frac{\pi}{2}\right]$.

Q6. Use Newton's iterative method to find the root of the equation $3 x-\cos (x)+1=0$ starting with an initial guess 0.6.

SECTION-C

Q7. Determine the values of h that will ensure an approximation error of less than 0.00002 when approximating $\int_{0}^{\pi} \sin x d x$ andemploying :
a) Composite trapezoidal rule.
b) Composite Simpson's rule.

Q8. The function $f(x)=\tan \pi x-6$ has a zero at $\pi \arctan 6 \approx 0.447431543$. Let $p_{0}=0$ and $p_{1}=0.48$. Use ten iterations of the secant method to approximate this root.

Q9. A certain stimulus administered to each of the 12 patients resulted in the following increase in blood pressure :

$$
5,2,8,-1,3,0,-2,1,5,0,4,6 .
$$

Can it be concluded that the stimulus will, in general, be accompanied by an increase in blood pressure.

NOTE : Disclosure of identity by writing mobile number or making passing request on any page of Answer sheet will lead to UMC case against the Student.

