www.FirstRanker.com

www.FirstRanker.com

Roll No. Total No. of Pages: 02

Total No. of Questions: 09

B.Tech.(CE) (2011 Onwards) (Sem.-6) NUMERICAL METHODS IN CIVIL ENGINEERING

Subject Code: BTCE-604 M.Code: 71085

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

Q1. Answer the following:

- a) Define least square interpolation.
- b) Find an interval containing a root of the equation $x \cos(x) = 0$.
- c) Explain Implicit solutions.
- d) Determine the Lagrange interpolating polynomial passing through the points (2, 4) and (5, 3).
- e) Explain Explicit solutions.
- f) Explain briefly the Newmarks procedure.
- g) What is the order of convergence when Newton Raphson's method is applied to the equation $x^2 6x + 9 = 0$ to find its multiple root.
- h) Use the forward-difference formula to approximate the derivative of f(x) = In x at $x_0 = 1.8$ using h = 0.01.
- i) Write a short note on bisection method.
- i) Define initial value problem with a suitable example.

1 M-71085 (S2)-1141

SECTION-B

Q2. Use the Runge-Kutta method of order 4 ton approximate the solution of the following initial value problem

$$y' = y - t^2 + 1$$
, $0 \le t \le 2$, $y(0) = 0.5$.

Q3. Apply Gauss Jordan method to find the inverse of the matrix

$$\begin{bmatrix} -2 & -3 \\ 6 & 7 \end{bmatrix}$$

Q4. The following data is given:

1.0	1.3	1.6	1.9	2.2
0.7651977	0.6200860	0.4554022	0.2818186	0.1103623

Use Lagrange interpolation to approximate f(1.5) with $x_0 = 1.6$.

- Q5. Find a real root, correct to three decimal places of the equation $2x 3 = \cos(x)$ lying in the interval $\left[\frac{3}{2}, \frac{\pi}{2}\right]$.
- Q6. Use Newton's iterative method to find the root of the equation $3x \cos(x) + 1 = 0$ starting with an initial guess 0.6.

SECTION-C

- Q7. Determine the values of h that will ensure an approximation error of less than 0.00002 when approximating $\int_0^{\pi} \sin x dx$ and employing:
 - a) Composite trapezoidal rule
 - b) Composite Simpson's rule.
- Q8. The function $f(x) = \tan \pi x 6$ has a zero at $\pi \arctan 6 \approx 0.447431543$. Let $p_0 = 0$ and $p_1 = 0.48$. Use ten iterations of the secant method to approximate this root.
- Q9. A certain stimulus administered to each of the 12 patients resulted in the following increase in blood pressure:

Can it be concluded that the stimulus will, in general, be accompanied by an increase in blood pressure.

NOTE: Disclosure of identity by writing mobile number or making passing request on any page of Answer sheet will lead to UMC case against the Student.

2 M-71085 (S2)-1141